Skip to main content

Applications of Underwater Shock Wave Research to Medicine

  • Chapter
  • First Online:
Visualization of Shock Wave Phenomena
  • 739 Accesses

Abstract

In 1981, Professor M. Kuwahara of the Department of Urology, School of Medicine, Tohoku University invited us to develop a prototype lithotripter using micro explosions. Then the collaboration started applying results of the basic experiments to design a lithotripsy for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, Y., Ise, H., Kitayama, O., Usui, R., Suzuki, N., Matsuno, M., et al. (1990). Disintegration of gallbladder stones by ESWL. Gallstone, 4, 451–459.

    Google Scholar 

  • Bellhouse, H. J., Quikan, N. J., & Ainsworth, R. W. (1997). Needle-less delivery of drugs, in dry powder form, using shock waves and supersonic gas flow. In A. F. P. Houwing, & A. Paul, (Eds.) Proc. 21st ISSW, (Vol. 1, pp. 51–56). Australia: The Great Keppel Island.

    Google Scholar 

  • Chaussey, C. H., Schmiedt, E., Jocham, D., Walter, V., Brendel, W., Forsmann, B., et al. (1982). Extracorporeal shock wave lithotripsy. New aspects in the treatment of kidney stone disease. Muenchen: Karger.

    Book  Google Scholar 

  • Chaussey, C. H., Schmidt, J. E., Joachim, D., Ferbes, G., Brundel, W., Forsmann, B., et al. (1986). Extracorporeal shock wave lithotripsy. Muenchen: Karger.

    Google Scholar 

  • Hassan, M., Ezura, M., Timfeev, E. V., Tominaga, T., Saito, T., Takahashi, A., et al. (2004). Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilor aneurysm. AINR American Journal of Neuroradiology, 25, 63–68.

    Google Scholar 

  • Hirano, T. (2001). Development of revascularization of cerebral thrombosis using laser induced liquid jets (MD thesis). Graduate School of Medicine, Tohoku University.

    Google Scholar 

  • Hirano, T., Uenohara, H., Nakagawa, A., Sato, S., Takahashi, A., Takayama, K., & Yoshimoto, T. (2002). A novel drug delivery system with Ho:YAG laser induced liquid jet. In Proceedings of the International Federation for Medical and Biological Engineering. 2nd European Conference (pp. 1006–1007).

    Google Scholar 

  • Ikeda, K., Matsuda, M., Tomita, K., & Takayama, K. (1999). Application of extracorporeal shock wave on bone. Basic and clinical study. In G. J. Ball, R. Hillier & G. T. Robertz (Eds.), Shock Waves. Proceedings of 22nd ISSW, London (Vol. 1, pp. 623–626).

    Google Scholar 

  • Kambe, K., Kuwahara, M., Kurosu, S., Orikasa, S., & Takayama, K. (1986). Underwater shock wave focusing, an application to extracorporeal lithotripsy. In D. Bershader & R. Hanson (Eds.), Shock Waves and Shock Tubes, Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes, Berkeley (pp. 641–647).

    Google Scholar 

  • Kato, K. (2004). Study of mechanism and damage threshold of brain nerve cells by shock wave loading (MD thesis). Graduate School of Medicine, Tohoku University.

    Google Scholar 

  • Krehl, P. O. K. (2009). History of shock waves, explosions and impact. Berlin: Springer.

    Google Scholar 

  • Kuwahara, M., Kambe, K., Kurosu, S., Orikasa, S., & Takayama, K. (1986). Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves. The Journal of Urology, 133, 814–817.

    Article  Google Scholar 

  • Kuwahara, M., Ioritani, M., Kambe, K., Shirau, S., Taguchi, K., Sitoh, S., et al. (1989). Hyperechoic region induced by focused shock waves in vivo in vitro possibility of acoustic cavitation. Journal of Lithotripsy and Stone Disease, 1, 282–287.

    Google Scholar 

  • Loske, A. M. (2007). Shock wave physics for urologists. Universidad National Autonoma de Mexico.

    Google Scholar 

  • Menezes, V., Takayama, K., Gojani, A., & Hosseini, S. H. R. (2008). Shock wave driven micro-particles for pharmaceutical applications. Shock Waves, 18, 393–400.

    Article  Google Scholar 

  • Nakada. M., Menezes, V., Kanno, A., Hosseini, S. H. R., & Takayama, K. (2008). Shock wave based biolistic device for DNA and drug delivery. Japanese Journal of Applied Physics, 47, 1522–1526.

    Google Scholar 

  • Nagayasu, N. (2002). Study of shock waves generated by micro explosion and their applications (Ph.D. thesis). Graduate School of Engineering, Faculty of Engineering, Tohoku University.

    Google Scholar 

  • Nakagawa, A. (1998). Basic study of shock wave assisted therapeutic devises in the field of neuro brain surgery (MD thesis). Graduate School of Medicine, Tohoku University.

    Google Scholar 

  • Nakagawa, A., Kumabe, T., Kanamori, M., Saito, R., Hirano, T., Takayama, K., et al. (2008). Clinical application of pulsed laser-induced liquid jet: Preliminary report in glioma surgery. Neurological Surgery, 36, 1005–1010.

    Google Scholar 

  • Obara, T. (2001). A study of applications of underwater shock waves to medicine (Ph.D. thesis). Graduate School of Engineering, Faculty of Engineering Tohoku University.

    Google Scholar 

  • Ohki, T. (1999). Study of medical applications of pulsed Ho:YAG laser induced underwater (Master thesis). Graduate School of Engineering, Faculty of Engineering Tohoku University.

    Google Scholar 

  • Okazaki, K. (1989). Fundamental study in extracorporeal shock wave lithotripsy using piezoceramics. Japanese Journal of Applied Physics, 28, 143–145.

    Article  Google Scholar 

  • Shitamori, K. (1990). Study of propagation and focusing of underwater shock focusing (Master thesis). Graduate School of Tohoku University Faculty of Engineering, Tohoku University.

    Google Scholar 

  • Yamamoto, H., Hasebe, Y., Kondo, M., Fukuda, K., Takayama, K., & Shimokawa, H. (2015). Development of a novel shock wave catheter ablation system. In R. Bonazza & D. Ranjan (Eds.), Shock Waves, Proceedings of the 29th ISSW, Madison (Vol. 2, pp. 855–860).

    Google Scholar 

  • Yutkin, L. A. (1950). Apparat YRAT-1 Medeport USSR Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Takayama .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takayama, K. (2019). Applications of Underwater Shock Wave Research to Medicine. In: Visualization of Shock Wave Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-19451-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19451-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19450-5

  • Online ISBN: 978-3-030-19451-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics