Skip to main content

Experimental Results

  • Chapter
  • First Online:
  • 1508 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter, we present experimental results on three experimental mechanical systems. They illustrate the applicability of the methodologies exposed in the foregoing chapters. The first set of experiments concerns flexible-joint manipulators, whose dynamics and control have been thoroughly explained. One system is nonlinear and weakly flexible, the other one is linear and highly flexible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Now the Gipsa Lab, Automatic Control Dept.

  2. 2.

    According to the U.S. Department of Energy Microgrid Exchange Group, the following criteria defines a microgrid: A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries, that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island mode.

References

  1. Spong MW (1989) Adaptive control of flexible joint manipulators. Syst Control Lett 13:15–21

    MathSciNet  MATH  Google Scholar 

  2. Spong MW (1995) Adaptive control of flexible joint manipulators: comments on two papers. Automatica 31(4):585–590

    MathSciNet  MATH  Google Scholar 

  3. Brogliato B, Rey D (1998) Further experimental results on nonlinear control of flexible joint manipulators. In: Proceedings of the American control conference, Philadelphia, PA, USA, vol 4, pp 2209–2211

    Google Scholar 

  4. Brogliato B, Rey D, Pastore A, Barnier J (1998) Experimental comparison of nonlinear controllers for flexible joint manipulators. Int J Robot Res 17(3):260–281

    Google Scholar 

  5. Brogliato B, Ortega R, Lozano R (1995) Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31(7):941–956

    MathSciNet  MATH  Google Scholar 

  6. Spong MW (1987) Modeling and control of elastic joint robots. ASME J Dyn Syst Meas Control 109:310–319

    Google Scholar 

  7. Lozano R, Brogliato B (1992) Adaptive control of robot manipulators with flexible joints. IEEE Trans Autom Control 37(2):174–181

    MathSciNet  MATH  Google Scholar 

  8. Brogliato B, Lozano R (1996) Correction to “adaptive control of robot manipulators with flexible joints”. IEEE Trans Autom Control 41(6):920–922

    MATH  Google Scholar 

  9. de Larminat P (1993) Automatique. Commande des Systèmes Linéaires. Hermès, Paris, France

    Google Scholar 

  10. Walsh A, Forbes JR (2018) Very strictly passive controller synthesis with affine parameter dependence. IEEE Trans Autom Control 63(5):1531–1537

    MathSciNet  MATH  Google Scholar 

  11. Walsh A, Forbes JR (2016) A very strictly passive gain-scheduled controller: theory and experiments. IEEE/ASME Trans Mechatron 21(6):2817–2826

    Google Scholar 

  12. Giusti A, Malzahn J, Tsagarakis NG, Althoff M (2018) On the combined inverse-dynamics/passivity-based control of elastic-joint robots. IEEE Trans Robot 34(6):1461–1471. https://doi.org/10.1109/TRO.2018.2861917

    Article  Google Scholar 

  13. Ott C, Albu-Schaeffer A, Kugi A, Hirzinger G (2008) On the passivity-based impedance control of flexible joint robots. IEEE Trans Robot 24(2):416–429

    Google Scholar 

  14. Calanca A, Muradore R, Fiorini P (2017) Impedance control of series elastic actuators: passivity and acceleration-based control. Mechantronics 47:37–48

    Google Scholar 

  15. Tien LL, Albu-Schaeffer A, Hirzinger G (2007) MIMO state feedback controller for a flexible joint robot with strong joint coupling. In: IEEE international conference on robotics and automation, Roma, Italy pp 3824–3830

    Google Scholar 

  16. Albu-Schafer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39

    MATH  Google Scholar 

  17. Albu-Schafer A, Ott C, Hirzinger G (2004) A passivity based cartesian impedance controller for flexible joint robots – Part II: full state feedback, impedance design and experiments. In: Proceedings of the IEEE international conference on robotics and automation, New Orleans, LA, pp 2666–2672

    Google Scholar 

  18. Haninger K, Tomizuka M (2018) Robust passivity and passivity relaxation for impedance control of flexible-joint robots with ineer-loop torque control. IEEE/ASME Trans Mechatron 23(6):2671–2680. https://doi.org/10.1109/TMECH.2018.2870846

    Article  Google Scholar 

  19. Garofalo G, Ott C (2017) Energy based limit cycle control of elastically actuated robots. IEEE Trans Autom Control 62(5):2490–2497

    MathSciNet  MATH  Google Scholar 

  20. Li Y, Guo S, Xi F (2017) Preferable workspace for fatigue life improvement of flexible-joint robots under percussive riveting. ASME J Dyn Syst Meas Control 139:041,012

    Google Scholar 

  21. Kostarigka AK, Doulgeri Z, Rovithakis GA (2013) Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49:1137–1147

    MathSciNet  MATH  Google Scholar 

  22. Chang YC, Yen HM (2012) Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. Int J Control 85(2):194–212

    MathSciNet  MATH  Google Scholar 

  23. Kelly R, nez VS (1998) Global regulation of elastic joints robots based on energy shaping. IEEE Trans Autom Control 43(10):1451–1456

    Google Scholar 

  24. Liu C, Cheah CC, Slotine JJE (2008) Adaptive task-space regulation of rigid-link flexible-joint robots with uncertain kinematics. Automatica 44:1806–1814

    MathSciNet  MATH  Google Scholar 

  25. Battilotti S, Lanari L (1995) Global set point control via link position measurement for flexible joint robots. Syst Control Lett 25:21–29

    MathSciNet  MATH  Google Scholar 

  26. Battilotti S, Lanari L (1997) Adaptive disturbance attenuation with global stability for rigid and elastic joint robots. Automatica 33(2):239–243

    MathSciNet  MATH  Google Scholar 

  27. Feliu V, Pereira E, Diaz IM (2014) Passivity-based control of single-link flexible manipulators using a linear strain feedback. Mech Mach Theory 71:191–208

    Google Scholar 

  28. Ryu JH, Kwon DS, Hannaford B (2004) Control of flexible manipulator with noncollocated feedback: time-domain passivity approach. IEEE Trans Robot 20(4):776–780

    MATH  Google Scholar 

  29. Damaren CJ (2000) Passivity and noncollocation in the control of flexible multibody systems. ASME J Dyn Syst Meas Control 122:11–17

    Google Scholar 

  30. Forbes JR, Damaren CJ (2012) Single-link flexible manipulator control accomodating passivity violations: theory and experiments. IEEE Trans Control Syst Technol 20(3), 652–662

    Google Scholar 

  31. Jakubczyk B, Respondek W (1980) On the linearization of control systems. Bull Acad Polon Sci Math 28:517–522

    MathSciNet  MATH  Google Scholar 

  32. Spong MW (1994) The swing up control of the Acrobot. In: Proceedings of IEEE International Conference on Robotics and Automation, San Diego, CA, USA, pp 616–621

    Google Scholar 

  33. Fantoni I, Lozano R, Spong M (1998) Energy based control of the pendubot. IEEE Trans Autom Control 45(4):725–729

    MathSciNet  MATH  Google Scholar 

  34. Fantoni I, Lozano R, Mazenc F, Pettersen KY (2000) Stabilization of an underactuated hovercraft. Int J Robust Nonlinear Control 10:645–654

    MathSciNet  MATH  Google Scholar 

  35. Arcak M (2007) Passivity as a design tool for group coordination. IEEE Trans Autom Control 52(8):1380–1390

    MathSciNet  MATH  Google Scholar 

  36. Arcak M, Meissen C, Packard A (2016) Networks of dissipative systems. Briefs in electrical and computer engineering. Control, automation and robotics. Springer International Publishing (2016)

    Google Scholar 

  37. Tippett MJ, Bao J (2013) Dissipativity based distributed control synthesis. J Process Control 23:755–766

    Google Scholar 

  38. Hatanaka T, Chopra N, Fujita M, Spong MW (2015) Passivity-based control and estimation in networked robotics. Communications and control engineering. Springer International Publishing

    Google Scholar 

  39. Kottenstette N, Hall JF, Koutsoukos X, Sztipanovits J, Antsaklis P (2013) Design of networked control systems using passivity. IEEE Trans Control Syst Technol 21(3):649–665

    Google Scholar 

  40. Alonso AA, Ydstie BE (1996) Process systems, passivity, and the second law of thermodynamics. Comput Chem Eng 20:1119–1124. Suppl

    Google Scholar 

  41. Alonso AA, Ydstie BE (2001) Stabilization of distributed systems using irreversible thermodynamics. Automatica 37:1739–1755

    MathSciNet  MATH  Google Scholar 

  42. Bao J, Lee PL (2007) Process control: the passive systems approach. Advances in industrial control. Springer, London

    Google Scholar 

  43. Marton L, Szederkenyi G, Hangos KM (2018) Distrubuted control of interconnected chemical reaction networks with delay. J Process Control 71:52–62

    Google Scholar 

  44. Oterao-Muras I, Szederkenyi G, Alonso AA, Hangos KM (2008) Local dissipative Hamiltonian description of reversioble reaction networks. Syst Control Lett 57:554–560

    MATH  Google Scholar 

  45. Ydstie BE (2002) Passivity based control via the second law. Comput Chem Eng 26:1037–1048

    Google Scholar 

  46. Trip S, Cucuzzella M, de Persis C, van der Schaft A, Ferrara A (2018) Passivity-based design of sliding modes for optimal load frequency control. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2018.2841844

    Article  Google Scholar 

  47. Li H, Gao H, Shi P (2010) New passivity analysis for neural networks with discrete and distributed delays. IEEE Trans Neural Netw 21(11):1842–1847

    Google Scholar 

  48. Kwon OM, Lee SM, Park JH (2012) On improved passivity criteria of uncertain neural networks with time-varying delays. Nonlinear Dyn 67(2):1261–1271

    MathSciNet  MATH  Google Scholar 

  49. Zhang XM, Han QL, Ge X, Zhang BL (2018) Passivity analysis of delayed neural networks based on Lyapunov-Krasovskii functionals with delay-dependent matrices. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2018.2874273

    Article  Google Scholar 

  50. Atashzar SF, Shahbazi M, Tavakoli M, Patel R (2017) A passivity-based approach for stable patien-robot interaction in haptics-enabled rehabilitation systems: modulated time-domain passivity control. IEEE Trans Control Syst Technol 25(3):991–1006

    Google Scholar 

  51. Dong Y, Chopra N (2019) Passivity-based bilateral tele-driving system with parametric uncertainly and communication delays. IEEE Syst Lett 3(2):350–355

    MathSciNet  Google Scholar 

  52. Griffiths PG, Gillespie RB, Freudenberg JS (2011) A fundamental linear systems conflict between performance and passivity in haptic rendering. IEEE Trans Robot 27(1):75–88

    Google Scholar 

  53. Miller BE, Colgate JE, Freeman RA (2004) On the role of dissipation in haptic systems. IEEE Trans Robot 20(4):768–771

    Google Scholar 

  54. Shen X, Goldfarb M (2006) On the enhanced passivity of pneumatically actuated impedance-type haptic interfaces. IEEE Trans Robot 22(3):470–480

    Google Scholar 

  55. Ye Y, Pan YJ, Gupta Y, Ware J (2011) A power-based time domain passivity control for haptic interfaces. IEEE Trans Control Syst Technol 19(4):874–883

    Google Scholar 

  56. Ryu JH, Kim YS, Hannaford B (2004) Sampled and continuous-time passivity and stability of virtual environment. IEEE Trans Robot 20(4):772–776

    Google Scholar 

  57. Brogliato B, Landau ID, Lozano R (1991) Adaptive motion control of robot manipulators: a unified approach based on passivity. Int J Robust Nonlinear Control 1(3):187–202

    Google Scholar 

  58. Kasac J, Novakovic B, Majetic D, Brezak D (2008) Passive finite dimensional repetitive control of robot manipulators. IEEE Trans Control Syst Technol 16(3):570–576

    MATH  Google Scholar 

  59. Pakshin P, Emelianova J, Emelianov M, Galkowski K, Rogers E (2018) Passivity based stabilization of repetitive processes and iterative learning control design. Syst Control Lett 122:101–108

    MathSciNet  MATH  Google Scholar 

  60. Pakshin P, Emelianova J, Emelianov M, Galkowski K, Rogers E (2016) Dissipativity and stabilization of nonlinear repetitive processes. Syst Control Lett 91:14–20

    MathSciNet  MATH  Google Scholar 

  61. Donaire A, Romero JG, Perez T (2017) Trajectory tracking passivity-based control for marine vehicles subject to disturbances. J Frankl Inst 354:2167–2182

    Google Scholar 

  62. Fossen TI, Strand JP (1999) Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel. Automatica 35:3–16

    MathSciNet  MATH  Google Scholar 

  63. Fossen TI, Strand JP (2001) Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results. Automatica 37:701–715

    MathSciNet  MATH  Google Scholar 

  64. Caverly RJ, Forbes JR, Mohammadshhi D (2015) Dynamic modeling and passivity-based control of a single degree of freedom cable-actuated system. IEEE Trans Control Syst Technol 23(3):898–909

    Google Scholar 

  65. Caverly RJ, Forbes JR (2018) Flexible cable-driven parallel manipulator control: maintaining positive cable tensions. IEEE Trans Control Syst Technol 26(5):1874–1883

    Google Scholar 

  66. Guerrero-Sanchez ME, Mercado-Ravell DA, Lozano R (2017) Swiing-attenuation for a quadrotor transporting a cable-susoended payload. ISA Trans 68:433–449

    Google Scholar 

  67. Aziminejad A, Tavakoli M, Patel RV, Moallem M (2008) Stability and performance in delayed bilateral teleoperation: theory and experiments. Control Eng Pract 16(11):1329–1343

    Google Scholar 

  68. Hu HC, Liu YC (2017) Passivity-based control framework for task-space bilateral teleoperation with parametric uncertainty over reliable networks. ISA Trans 70:187–199

    Google Scholar 

  69. Niemeyer G, Slotine JJ (1991) Stable adaptive teleoperation. IEEE J Ocean Eng 16(2):152–162

    Google Scholar 

  70. Nuno E, Basanez L, Ortega R (2011) Passivity-based control for bilateral teleoperation: a tutorial. Automatica 47:485–495

    MathSciNet  MATH  Google Scholar 

  71. Ryu JH, Kwon DS, Hannaford B (2004) Stable teleoperation with time-domain passivity control. IEEE Trans Robot Autom 20:365–373

    Google Scholar 

  72. Rams H, Schoeberl M, Schlacher K (2018) Optimal motion planning and energy-based control of a single mast stacker crane. IEEE Trans Control Syst Technol 26(4):1449–1457

    Google Scholar 

  73. Achour AY, Mendil B, Bacha S, Munteanu I (2009) Passivity-based current controller design for a permanent magnet synchronous motor. ISA Trans 48:336–346

    Google Scholar 

  74. Okaeme CC, Mishra S, Wen JTY (2018) Passivity-based thermohygrometric control in buildings. IEEE Trans Control Syst Technol 26(5):1661–1672

    Google Scholar 

  75. Heindel S, Mueller PC, Rinderknecht S (2018) Unbalance and resonance elimination with active bearings on general rotors. J Sound Vib 431:422–440

    Google Scholar 

  76. Chinde V, Kosaraju KC, Kelkar A, Pasumarthy R, Sarkar S, Singh NM (2017) A passivity-based power-shaping control of building HVAC systems. ASME J Dyn Syst Meas Control 139:111,007

    Google Scholar 

  77. Azimi V, Shu T, Zhao H, Ambrose E, Ames AA, Simon D (2017) Robust control of a powered transfemoral prosthesis device with experimental verification. In: Proceedings American control conference, Seattle, USA, pp 517–522

    Google Scholar 

  78. Ji F, Xiang J, li W, Yue Q (2017) A feedback passivation design for DC microgrids and its DC/DC converters. Energies 10:1–15

    Google Scholar 

  79. Harnefors L, Wang X, Yepes A, Blaabjerg F (2016) Passivity-based stability assessment of grid-connected VSCs-an overview. IEEE J Emerg Sel Top Power Electron 4(1):116–125

    Google Scholar 

  80. Stegink T, de Persis C, van der Schaft A (2017) A unifying energy-based approach to stability of power grids with market dynamics. IEEE Trans Autom Control 62(6):2612–2622

    MathSciNet  MATH  Google Scholar 

  81. Fossas E, Ros RM, Sira-Ramirez H (2004) Passivity-based control of a bioreactor system. J Math Chem 36(4):347–360

    MathSciNet  MATH  Google Scholar 

  82. Chan CY (2008) Simplified parallel-damped passivity-based controllers for dc-dc power converters. Automatica 44(11):2977–2980

    MathSciNet  MATH  Google Scholar 

  83. Lee TS (2004) Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans Ind Electron 51(4):892–902

    Google Scholar 

  84. Son YI, Kim IH (2012) Complementarity PID controller to passivity-based nonlinear control of boost converters with inductor resistance. IEEE Trans Control Syst Technol 20(3):826–834

    Google Scholar 

  85. Li PY, Wang MR (2014) Natural storage function for passivity-basd trajectory control of hydraulic actuators. IEEE/ASME Trans Mechatron 19(3):1057–1068

    Google Scholar 

  86. Mazenc F, Richard E (2001) Stabilization of hydraulic systems using a passivity property. Syst Control Lett 44:111–117

    MathSciNet  MATH  Google Scholar 

  87. Castanos F, Gromov D (2016) Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints. Syst Control Lett 94:11–18

    MathSciNet  MATH  Google Scholar 

  88. Heins PH, Jones BL, Sharma AS (2016) passivity-based output-feedback control of turbulent channel flow. Automatica 69:348–355

    MathSciNet  MATH  Google Scholar 

  89. Qu YB, Song HH (2011) Energy-based coordinated control of wind energy conversion system with DFIG. Int J Control 84(12):2035–2045

    MathSciNet  MATH  Google Scholar 

  90. Koutsoukos X, Kottenstette N, Antsaklis P, Sztipanovits J (2008) Passivity-based control design for cyber-physical systems. In: International workshop on cyber-physical systems challenges and applications, Santorini Island, Greece

    Google Scholar 

  91. Palacios E, Espinoza-Perez G, Campos-Delgado DU (2007) A passivity-based approach for HIV-1 treatment scheduling. In: Proceedings of the American control conference, New York city, USA, pp 4106–4111 (2007)

    Google Scholar 

  92. Valderrama GE, Stankovic AM, Mattavelli P (2003) Dissipativity-based adaptive and robust control of UPS in unbalanced operation. IEEE Trans Power Electron 18(4):1056–1062

    Google Scholar 

  93. Cormerais H, Buisson J, Richard PY, Morvan C (2008) Modelling and passivity based control of switched systems from bond graph formalism: application to multicellular converters. J Frankl Inst 345:468–488

    MathSciNet  MATH  Google Scholar 

  94. Fattah HAA, Loparo KA (2003) passivity-based torque and flux tracking for induction motors with magnetic saturation. Automatica 39:2123–2130

    MathSciNet  MATH  Google Scholar 

  95. Ydstie BE, Jiao Y (2006) Passivity-based control of the float-glass process. IEEE Control Syst Mag 26(6):64–72

    Google Scholar 

  96. dean Leon EC, Parra-Vega V, Espinosa-Romero A (2006) Visual servoing for constrained planar robots subject to complex friction. IEEE/ASME Trans Mechatron 11(4):389–400

    Google Scholar 

  97. Hsu L, Costa RR, Lizarralde F (2007) Lyapunov/passivity based adaptive control of relative degree two MIMO systems with an application to visual servoing. IEEE Trans Autom Control 52(2):364–371

    MathSciNet  MATH  Google Scholar 

  98. Morales B, Roberti F, Toibero JM, Carelli R (2012) Passivity based visual servoing of mobilde robots with dynamic compensation. Mechatronics 22(4):481–491

    Google Scholar 

  99. Henze B, Balachandran R, Roa-Garzon MA, Ott C, Albu-Schaeffer A (2018) Passivity analysis and control of humanoid robots on movable ground. IEEE Robot Autom Lett 3(4):3457–3464

    Google Scholar 

  100. Spong MW, Holm JK, Lee D (2007) Passivity based control of bipedal locomotion. IEEE Robot Autom Mag 14(2):30–40

    Google Scholar 

  101. Shi J, Kelkar AG (2007) A dissipative control design for Jupiter icy moons orbiter. ASME J Dyn Syst Meas Control 129:559–565

    Google Scholar 

  102. Akmeliawati R, Mareels IMY (2010) Nonlinear energy-based control method for aircraft automatic landing systems. IEEE Trans Control Syst Technol 18(4):871–884

    Google Scholar 

  103. Wickramasinghe IPM, Maithripala DHS, Berg JM, Dayawansa WP (2009) passivity-based stabilization of a 1-DOF electrostatic MEMS model with a parasitic capacitance. IEEE Trans Control Syst Technol 17(1):249–256

    Google Scholar 

  104. Xiao Q, Huang Z, Zeng Z (2019) Passivity analysis for memristor-based inertial neural networks with discrete and distributed delays. IEEE Trans Syst Man Cybern Syst 49(2):375–385. https://doi.org/10.1109/TSMC.2017.2732503

  105. Zeng HB, He Y, Wu M, Xiao HQ (2014) Improved conditions for passivity of neural networks with a time-varying delay. IEEE Trans Cybern 44(6):785–792

    Google Scholar 

  106. Lee P, Clark A, Alomair B, Bushnell L, Poovendran R (2018) Adaptive mitigation of multi-virus propagation: a passivity-based approach. IEEE Trans Control Netw Syst 5(1):583–596

    MathSciNet  MATH  Google Scholar 

  107. Ghanbari V, Duenas VH, Antsaklis PJ, Dixon WE (2018) Passivity-based iterative learning control for cycling induced by functional electrical stimulation with electric motor assistance. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2018.2854773

    Article  Google Scholar 

  108. Okawa Y, Muto K, Namerikawa T (2018) Passivity-based stability analysis of electricity market trading with dynamic pricing. SICE J Control Meas Syst Integr 11(5):390–398

    Google Scholar 

  109. Manivannan R, Samidurai R, Cao J, Perc M (2018) Design of resilient reliable dissipativity control for systems with actuator faults and probabilistic time-delay signals via sampled-data approach. IEEE Trans Syst Man Cybern: Syst. https://doi.org/10.1109/TSMC.2018.2846645

  110. Yang H, Cocquempot V, Jiang B (2008) Fault tolerance analysis for switched systems via global passivity. IEEE Trans Circuits Syst-II: Express Briefs 55(12):1279–1283

    Google Scholar 

  111. Shimizu T, Kobayashi Y, Sasaki M, Okada T (2009) Passivity-based control of a magnetically levitated flexible beam. Int J Robust Nonlinear Control 19:662–675

    MathSciNet  MATH  Google Scholar 

  112. Saied KT, Smaoui M, Thomasset D, Mnif F, Derbel N (2008) Nonlinear passivity based control law with application to electropneumatic system. In: Proceedings of 17th IFAC world congress, Seoul, Korea, pp 1827–1832

    Google Scholar 

  113. Igarashi Y, Hatamaka T, Fujita M, Spong MW (2009) Passivity-based attitude synchrnization in \(SE(3)\). IEEE Trans Control Syst Technol 17(5):1119–1134

    Google Scholar 

  114. Tsiotras P (1998) Further passivity results for the attitude control problem. IEEE Trans Autom Control 43(11):1597–1600

    MathSciNet  MATH  Google Scholar 

  115. Wen J, Arcak M (2004) A unifying passivity framework for network flow control. IEEE Trans Autom Control 49(2):162–174

    MathSciNet  MATH  Google Scholar 

  116. Hatanaka T, Chopra N, Ishizaki T, Li N (2018) Passivity-based distributed optimization with communication delays using PI consensus algorithm. IEEE Trans Autom Control 63(12):4421–4428

    MathSciNet  MATH  Google Scholar 

  117. Misgeld BJE, Hewing L, Liu L, Leonhardt S (2019) Closed-loop positive real optimal control of variable stiffness actuators. Control Eng Pract 82:142–150

    Google Scholar 

  118. Gorbet RB, Wang DWL (1998) A dissipaticity approach to stability of a shape memory alloy position control system. IEEE Trans Control Syst Technlol 6(4):554–562

    Google Scholar 

  119. Tadmor G, Banaszuk A (2002) Observer-based control of vortex motion in a combustor recirculation region. IEEE Trans Control Syst Technlol 10(5):749–755

    Google Scholar 

  120. Mojallizadeh MR, Badamchizadeh MA (2016) Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification. IEEE J Photovolt 6(2):532–539

    Google Scholar 

  121. Kalantar A, Kofighi A (2010) Adaptive passivity-based control of pem fuel cell/battery hybrid power source for stand-alone applications. Adv Electr Comput Eng 10(4):111–120

    Google Scholar 

  122. Croci L, Martinez A, Coirault P, Champenois G, Gaubert JP (2012) Passivity-based control of photovoltaic-wind hybrid system with Euler-Lagrange modeling. In: Proceedings of IECON 2012 - 38th annual conference on IEEE industrial electronics society, Montreal, QC, Canada, pp 1126–1131

    Google Scholar 

  123. Hernandez-Mejia G, Alanis AY, Hernandez-Gonzalez M, Findeisen R, Hernandez-Vargas EA (2019) Passivity-based inverse optimal impulsive control for Influenza treatment in the host. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2019.2892351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brogliato, B., Lozano, R., Maschke, B., Egeland, O. (2020). Experimental Results. In: Dissipative Systems Analysis and Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-19420-8_9

Download citation

Publish with us

Policies and ethics