Skip to main content

Dissipative Physical Systems

  • Chapter
  • First Online:
Dissipative Systems Analysis and Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter, we shall present a class of dissipative systems which correspond to models of physical systems, and hence embed in their structure the conservation of energy (first principle of thermodynamics) and the interaction with their environment through pairs of conjugated variables with respect to the power. First, we shall recall three different definitions of systems obtained by energy-based modeling: controlled Lagrangian, input–output Hamiltonian systems, and port-controlled Hamiltonian systems. We shall illustrate and compare these definitions on some simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 21 May 2022

    The original version of the book was inadvertently published with incorrect text and equations. The incorrect text and equations were corrected. The erratum chapters and the book have been updated with the changes.

Notes

  1. 1.

    Carathéodory’s, Utkin’s, Aizerman–Pyatniskii’s, and Filippov’s approaches are equivalent under some conditions [46,47,48], but yield different solutions in general.

  2. 2.

    That is, the constraints are linearly independent everywhere.

  3. 3.

    Recall that \(\partial \phi (\cdot )\) is a set-valued maximum monotone operator, see Corollary 3.121.

  4. 4.

    Unbounded, because normal cones are not bounded, and unilateral, because normal cones to sets embed unilaterality.

  5. 5.

    Strictly speaking, this is true only if the function has no accumulation of discontinuities on the right, which is the case for the velocity in mechanical systems with impacts and complementarity constraints. In other words, the motion cannot “emerge” from a “reversed” accumulation of impacts, under mild assumptions on the data.

  6. 6.

    That is, all phenomena involving an infinity of events in a finite time interval, and which occur in various types of nonsmooth dynamical systems like Filippov’s differential inclusions, etc.

  7. 7.

    In Control or Robotics studies, it may be sufficient to assume that the velocity is of special bounded variation, i.e., the measure \(d\mu _{na}\) is zero. However, this measure does not hamper stability analysis as we shall see in Sect. 7.2.4, though in all rigor one cannot dispense with its presence.

References

  1. Abraham R, Marsden JE (1978) Foundations of mechanics, 2nd edn. Benjamin Cummings, Reading

    MATH  Google Scholar 

  2. Lanczos C (1970) The variational principles of mechanics, 4th edn. Dover, New York

    MATH  Google Scholar 

  3. Libermann P, Marle CM (1987) Symplectic geometry and analytical mechanics. Reidel, Dordrecht

    MATH  Google Scholar 

  4. van der Schaft AJ (1984) System theoretical description of physical systems, CWI Tracts 3. CWI Amsterdam, Netherlands

    Google Scholar 

  5. van der Schaft, AJ (1989) System theory and mechanics. In: Nijmeier H and Schumacher JM (eds) Three decades of mathematical system theory, vol 135. London, pp 426–452

    Google Scholar 

  6. Takegaki M, Arimoto S (1981) A new feedback method for dynamic control of manipulators. ASME J Dyn Syst Meas Control 102:119–125

    MATH  Google Scholar 

  7. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  8. Jones DL, Evans FJ (1973) A classification of physical variables and its application in variational methods. J Frankl Inst 295(6):449–467

    MathSciNet  Google Scholar 

  9. Bernstein GM, Lieberman MA (1989) A method for obtaining a canonical Hamiltonian for nonlinear LC circuits. IEEE Trans Circuits Syst 35(3):411–420

    MathSciNet  Google Scholar 

  10. Chua LO, McPherson JD (1974) Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans Circuits Syst 21(2):277–285

    MathSciNet  Google Scholar 

  11. Glocker C (2005) Models of nonsmooth switches in electrical systems. Int J Circuit Theory Appl 33:205–234

    MATH  Google Scholar 

  12. Moeller M, Glocker C (2007) Non-smooth modelling of electrical systems using the flux approach. Nonlinear Dyn 50:273–295

    MATH  Google Scholar 

  13. Acary V, Bonnefon O, Brogliato B (2011) Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering, vol 69. Springer Science+Business Media BV, Dordrecht

    Google Scholar 

  14. Szatkowski A (1979) Remark on explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans Circuits Syst 26(5):358–360

    MathSciNet  Google Scholar 

  15. Maschke BM, van der Schaft AJ, Breedveld PC (1995) An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans Circuits Syst I: Fundam Theory Appl 42(2):73–82

    MathSciNet  MATH  Google Scholar 

  16. Brockett RW (1977) Control theory and analytical mechanics. In: Martin C, Herman R (eds) Geometric control theory. Math Sci Press, Brookline, pp 1–46

    Google Scholar 

  17. de Jalon JG, Gutteriez-Lopez M (2013) Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and consraint forces. Multibody Syst Dyn 30(3):311–341

    MathSciNet  MATH  Google Scholar 

  18. Brogliato B, Goeleven D (2015) Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst Dyn 35(1):39–61

    MathSciNet  MATH  Google Scholar 

  19. Merkin Y (1997) Introduction to the theory of stability, TAM, vol 24. Springer, Berlin

    Google Scholar 

  20. van der Schaft AJ (2017) \(L2\)-gain and passivity techniques in nonlinear control, 3rd edn. Communications and control engineering. Springer International Publishing AG, Switzerland

    Google Scholar 

  21. Nijmeier H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, New York

    Google Scholar 

  22. Isidori A (1995) Nonlinear control systems. Communications and control engineering, 3rd edn. Springer, London. 4th printing, 2002

    Google Scholar 

  23. Maschke BM, van der Schaft AJ (1992) Port controlled Hamiltonian systems: modeling origins and system theoretic properties. In: Proceeding 2nd IFAC symposium on nonlinear control systems design, NOLCOS’92. Bordeaux, France, pp 282–288

    Google Scholar 

  24. van der Schaft AJ, Maschke BM (1995) The Hamiltonian formulation of energy conserving physical systems with ports. Archiv für Elektronik und Übertragungstechnik 49(5/6):362–371

    Google Scholar 

  25. Maschke BM, van der Schaft AJ, Breedveld PC (1992) An intrinsic Hamiltonian formulation of network dynamics: nonstandard poisson structures and gyrators. J Frankl Inst 329(5):923–966

    MathSciNet  MATH  Google Scholar 

  26. Maschke BM (1996) Elements on the modelling of multibody systems. In: Melchiorri C, Tornambè A (eds) Modelling and control of mechanisms and robots. World Scientific Publishing Ltd, Singapore

    Google Scholar 

  27. Branin FH (1977) The network concept as a unifying principle in engineering and the physical sciences. In: Branin FH, Huseyin K (eds) Problem analysis in science and engineering. Academic Press, New York, pp 41–111

    Google Scholar 

  28. Paynter HM (1961) Analysis and design of engineering systems. M.I.T Press, Cambridge

    Google Scholar 

  29. Breedveld PC (1984) Physical systems theory in terms of bond graphs. PhD thesis, University of Twente, Twente, Netherlands

    Google Scholar 

  30. van der Schaft AJ, Maschke BM (1994) On the Hamiltonian formulation of non-holonomic mechanical systems. Rep Math Phys 34(2):225–233

    MathSciNet  MATH  Google Scholar 

  31. Loncaric J (1987) Normal form of stiffness and compliant matrices. IEEE J Robot Autom 3(6):567–572

    Google Scholar 

  32. Fasse ED, Breedveld PC (1998) Modelling of elastically coupled bodies, part I: general theory and geometric potential function method. ASME J Dyn Syst Meas Control 120:496–500

    Google Scholar 

  33. Fasse ED, Breedveld PC (1998) Modelling of elastically coupled bodies, part II: exponential- and generalized-coordinate methods. J Dyn Syst Meas Control 120:501–506

    Google Scholar 

  34. Dalsmo M, van der Schaft AJ (1999) On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J Control Optim 37(1):54–91

    MathSciNet  MATH  Google Scholar 

  35. Maschke BM, van der Schaft AJ (1997) Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. In: Astolfi A, Melchiorri C, Tornambè A (eds) Modelling and control of mechanical systems. Imperial College Press, London, pp 1–16

    Google Scholar 

  36. Spong MW (1987) Modeling and control of elastic joint robots. ASME J Dyn Syst Meas Control 109:310–319

    MATH  Google Scholar 

  37. Tomei P (1991) A simple PD controller for robots with elastic joints. IEEE Trans Autom Control 36:1208–1213

    MathSciNet  Google Scholar 

  38. Paoli L, Schatzman M (1993) Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie. Math Model Numer Anal (Modèlisation Mathématique Anal Numérique) 27(6):673–717

    MathSciNet  MATH  Google Scholar 

  39. Acary V, de Jong H, Brogliato B (2014) Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Phys D: Nonlinear Phenom 269:103–119

    MathSciNet  MATH  Google Scholar 

  40. Brogliato B (2016) Nonsmooth mechanics. Models, dynamics and control. Communications and control engineering, 3rd edn. Springer International Publishing Switzerland, London. Erratum/Addendum at https://hal.inria.fr/hal-01331565

  41. Brogliato B (2003) Some perspectives on the analysis and control of complementarity systems. IEEE Trans Autom Control 48(6):918–935

    MathSciNet  MATH  Google Scholar 

  42. Georgescu C, Brogliato B, Acary V (2012) Switching, relay and complementarity systems: a tutorial on their well-posedness and relationships. Phys D: Nonlinear Phenom 241:1985–2002. Special issue on nonsmooth systems

    Google Scholar 

  43. Camlibel MK (2001) Complementarity methods in the analysis of piecewise linear dynamical systems. PhD thesis, Tilburg University, Katholieke Universiteit Brabant, Center for Economic Research, Netherlands

    Google Scholar 

  44. Imura J, van der Schaft AJ (2002) Characterization of well-posedness of piecewise-linear systems. IEEE Trans Autom Control 45(9):1600–1619

    MathSciNet  MATH  Google Scholar 

  45. Imura J (2003) Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans Autom Control 48(11):1926–1935

    MathSciNet  MATH  Google Scholar 

  46. Spraker JS, Biles DC (1996) A comparison of the Carathéodory and Filippov solution sets. J Math Anal Appl 198:571–580

    MathSciNet  MATH  Google Scholar 

  47. Thuan LQ, Camlibel MK (2014) On the existence, uniquenss and nature of Carathéodory and Filippov solutions for bimodal piecewise affine dynamical systems. Syst Control Lett 68:76–85

    MATH  Google Scholar 

  48. Zolezzi T (2002) Differential inclusions and sliding mode control. In: Perruquetti W, Barbot JP (eds) Sliding mode control in engineering. Marcel Dekker, New York, pp 29–52

    Google Scholar 

  49. Kailath T (1980) Linear systems. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  50. Zhao J, Hill DJ (2008) Dissipativity theory for switched systems. IEEE Trans Autom Control 53(4):941–953

    MathSciNet  MATH  Google Scholar 

  51. Yang D, Zhao J (2018) Feedback passification for switched LPV systems via a state and parameter triggered switching with dwell time constraints. Noninear Anal: Hybrid Syst 29:147–164

    MathSciNet  MATH  Google Scholar 

  52. Dong X, Zhao J (2012) Incremental passivity and output tracking of switched nonlinear systems. Int J Control 85(10):1477–1485

    MathSciNet  MATH  Google Scholar 

  53. Pang H, Zhao J (2018) Output regulation of switched nonlinear systems using incremental passivity. Nonlinear Anal: Hybrid Syst 27:239–257

    MathSciNet  MATH  Google Scholar 

  54. Pang H, Zhao J (2016) Incremental \({[Q, S, R)}\) dissipativity and incremental stability for switched nonlinear systems. J Frankl Inst 353:4542–4564

    MathSciNet  MATH  Google Scholar 

  55. Pang H, Zhao J (2017) Adaptive passification and stabilization for switched nonlinearly parameterized systems. Int J Robust Nonlinear Control 27:1147–1170

    MathSciNet  MATH  Google Scholar 

  56. Geromel JC, Colaneri P, Bolzern P (2012) Passivity of switched systems: analysis and control design. Syst Control Lett 61:549–554

    MathSciNet  MATH  Google Scholar 

  57. Zhao J, Hill DJ (2008) Passivity and stability of switched systems: a multiple storage function method. Syst Control Lett 57:158–164

    MathSciNet  MATH  Google Scholar 

  58. Aleksandrov AY, Platonov AV (2008) On absolute stability of one class of nonlinear switched systems. Autom Remote Control 69(7):1101–1116

    MathSciNet  MATH  Google Scholar 

  59. Antsaklis PJ, Goodwine B, Gupta V, McCourt MJ, Wang Y, Wu P, Xia M, Yu H, Zhu F (2013) Control of cyberphysical systems using passivity and dissipativity based methods. Eur J Control 19:379–388

    MATH  Google Scholar 

  60. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems, vol 35. Lecture notes in applied and computational mechanics. Springer, Berlin

    MATH  Google Scholar 

  61. King C, Shorten R (2013) An extension of the KYP-lemma for the design of state-dependent switching systems with uncertainty. Syst Control Lett 62:626–631

    MathSciNet  MATH  Google Scholar 

  62. Samadi B, Rodrigues L (2011) A unified dissipativity approach for stability analysis of piecewise smooth systems. Automatica 47(12):2735–2742

    MathSciNet  MATH  Google Scholar 

  63. Johansson M (2003) Piecewise linear control systems: a computational approach, vol 284. Lecture notes in control and information sciences. Springer, Berlin

    MATH  Google Scholar 

  64. Li J, Zhao J, Chen C (2016) Dissipativity and feedback passivation for switched discrete-time nonlinear systems. Syst Control Lett

    Google Scholar 

  65. Bemporad A, Bianchini G, Brogi F (2008) Passivity analysis and passification of discrete-time hybrid systems. IEEE Trans Autom Control 53(4):1004–1009

    MathSciNet  MATH  Google Scholar 

  66. Li J, Zhao J (2013) Passivity and feedback passfication of switched discrete-time linear systems. Syst Control Lett 62:1073–1081

    MATH  Google Scholar 

  67. Brogliato B, Rey D (1998) Further experimental results on nonlinear control of flexible joint manipulators. In: Proceedings of the American control conference, vol 4. Philadelphia, PA, USA, pp 2209–2211

    Google Scholar 

  68. Ortega R, Espinosa G (1993) Torque regulation of induction motors. Automatica 29:621–633

    Google Scholar 

  69. Maschke BM, van der Schaft AJ (1997) Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks. In: Astolfi A, Melchiorri C, Tornambè A (eds) Modelling and control of mechanical systems. Imperial College Press, London, pp 17–30

    Google Scholar 

  70. Marle CM (1998) Various approaches to conservative and nonconsevative nonholonomic systems. Rep Math Phys 42(1–2):211–229

    MathSciNet  MATH  Google Scholar 

  71. van der Schaft AJ (1987) Equations of motion for Hamiltonian systems with constraints. J Phys A: Math Gen 20:3271–3277

    MathSciNet  MATH  Google Scholar 

  72. McClamroch NH, Wang D (1988) Feedback stabilization and tracking of constrained robots. IEEE Trans Autom Control 33(5):419–426

    MathSciNet  MATH  Google Scholar 

  73. Campion G, d’Andréa Novel B, Bastin G (1990) Controllability and state-feedback stabilizability of non-holonomic mechanical systems. In: de Witt C (ed) Advanced robot control. Springer, Berlin, pp 106–124

    MATH  Google Scholar 

  74. Koon WS, Marsden JE (1997) Poisson reduction for nonholonomic systems with symmetry. In: Proceeding of the workshop on nonholonomic constraints in dynamics. Calgary, CA, pp 26–29

    Google Scholar 

  75. Adly S, Goeleven D (2004) A stability theory for second-order nonsmooth dynamical systems with application to friction problems. J Mathématiques Pures Appliquées 83:17–51

    MathSciNet  MATH  Google Scholar 

  76. Mabrouk M (1998) A unified variational model for the dynamics of perfect unilateral constraints. Eur J Mech A/Solids

    Google Scholar 

  77. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamic. In: Moreau JJ, Panagiotopoulos PD (eds) Nonsmooth mechanics and applications, vol 302. CISM international centre for mechanical sciences: courses and lectures. Springer, Berlin, pp 1–82

    Google Scholar 

  78. Ballard P (2001) Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints. Phil Trans R Soc Math Phys Eng Sci, special issue on Nonsmooth Mech, Ser A 359(1789):2327–2346

    Google Scholar 

  79. Brogliato B (2001) On the control of nonsmooth complementarity dynamical systems. Phil Trans R Soc Math Phys Eng Sci Ser A 359(1789):2369–2383

    Google Scholar 

  80. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley Interscience Publications, Canadian Mathematical Society Series of Monographs and Advanced Texts, Canada

    Google Scholar 

  81. Monteiro-Marques MDP (1993) Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction. Progress in nonlinear differential equations and their applications. Birkhauser, Basel

    Google Scholar 

  82. Kunze M, Monteiro-Marques MDP (2000) An introduction to Moreau’s sweeping process. In: Brogliato B (ed) Impacts in mechanical systems. Analysis and modelling. Lecture notes in physics, vol 551, pp 1–60. Springer, Berlin; Proceeding of the Euromech Colloquium, vol 397, Grenoble, France, June-July 1999

    Google Scholar 

  83. Lötstedt P (1982) Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J Appl Math 42:281–296

    MathSciNet  Google Scholar 

  84. Dieudonné J (1969) Eléments d’Analyse, vol 2. Gauthier-Villars

    Google Scholar 

  85. Hiriart-Urruty JB, Lemaréchal C (2001) Fundamentals of convex analysis. Grundlehren text editions. Springer, Berlin

    MATH  Google Scholar 

  86. Moreau JJ, Valadier M (1986) A chain rule involving vector functions of bounded variation. J Funct Anal 74:333–345

    MathSciNet  MATH  Google Scholar 

  87. Rudin W (1998) Analyse Réelle et Complexe. Dunod, Paris

    Google Scholar 

  88. Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. Academic Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brogliato, B., Lozano, R., Maschke, B., Egeland, O. (2020). Dissipative Physical Systems. In: Dissipative Systems Analysis and Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-19420-8_6

Download citation

Publish with us

Policies and ethics