Skip to main content

Dissipative Systems

  • Chapter
  • First Online:
Dissipative Systems Analysis and Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter, we will further study the concept of dissipative systems which is a very useful tool in the analysis and synthesis of control laws, for linear and nonlinear dynamical systems. One of the key properties of a dissipative dynamical system is that the total energy stored in the system decreases with time. Dissipativeness can be considered as an extension of PR systems to the nonlinear case. Some relationships between positive real and passive systems have been established in Chap. 2. There exist several important subclasses of dissipative nonlinear systems with slightly different properties which are important in the analysis. Dissipativity is useful in stabilizing mechanical systems like fully actuated robots manipulators [1], robots with flexible joints [2,3,4,5,6], underactuated robot manipulators, electric motors, robotic manipulation [7], learning control of manipulators [8, 9], fully actuated and underactuated satellites [10], combustion engines [11], power converters [12,13,14,15,16,17], neural networks [18,19,20,21], smart actuators [22], piezoelectric structures [23], haptic environments and interfaces [24,25,26,27,28,29,30,31,32,33], particulate processes [34], process and chemical systems [35,36,37,38,39], missile guidance [40], model helicopters [41], magnetically levitated shafts [42, 43], biological and physiological systems [44, 45], flat glass manufacture [46], and visual feedback control [47] (see Sect. 9.4 for more references). Some of these examples will be presented in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 21 May 2022

    The original version of the book was inadvertently published with incorrect text and equations. The incorrect text and equations were corrected. The erratum chapters and the book have been updated with the changes.

Notes

  1. 1.

    Here measurable is to be taken in the physical sense, not in the mathematical one. In other words, we assume that the process is well-equipped with suitable sensors.

  2. 2.

    That is a differential-algebraic equation (DAE) with input and output.

  3. 3.

    For instance, passivity is introduced in [95, Eq. (2.3.1)], with \(\beta =0\), and stating explicitly that it is assumed that the network has zero initial stored energy.

  4. 4.

    Once again we see that the system has zero bias provided \(x(t_{0})=0\). But in general \(\beta (x(t_{0})) \not = 0\).

  5. 5.

    i.e., the points reachable from \(x^{\star }\) with an admissible controller.

  6. 6.

    An operator may here be much more general than a linear operator represented by a constant matrix \(A \in \mathbb {R}^{m \times n}\): \(x \mapsto Ax \in \mathbb {R}^{m}\). For instance, the Laplacian \(\varDelta =\sum _{i=1}^{n} \frac{\partial ^{2}}{\partial x_{i}^{2}}\), or the D’Alembertian \(\frac{\partial ^{2}}{\partial t^{2}}-\varDelta \) are operators.

References

  1. Brogliato B, Landau ID, Lozano R (1991) Adaptive motion control of robot manipulators: a unified approach based on passivity. Int J Robust Nonlinear Control 1(3):187–202

    Google Scholar 

  2. Lozano R, Brogliato B (1992) Adaptive control of robot manipulators with flexible joints. IEEE Trans Autom Control 37(2):174–181

    MathSciNet  MATH  Google Scholar 

  3. Brogliato B, Ortega R, Lozano R (1995) Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica 31(7):941–956

    MathSciNet  MATH  Google Scholar 

  4. Brogliato B, Rey D, Pastore A, Barnier J (1998) Experimental comparison of nonlinear controllers for flexible joint manipulators. Int J Robot Res 17(3):260–281

    Google Scholar 

  5. Brogliato B, Lozano R (1996) Correction to “adaptive control of robot manipulators with flexible joints”. IEEE Trans Autom Control 41(6):920–922

    MATH  Google Scholar 

  6. Albu-Schafer A, Ott C, Hirzinger G (2004) A passivity based Cartesian impedance controller for flexible joint robots – part II: full state feedback, impedance design and experiments. In: Proceedings of the IEEE international conference on robotics and automation. New Orleans, LA, pp 2666–2672

    Google Scholar 

  7. Arimoto S (1999) Robotics research toward explication of everyday physics. Int J Robot Res 18(11):1056–1063

    Google Scholar 

  8. Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot Syst 2:123–140

    Google Scholar 

  9. Arimoto S (1990) Learning control theory for robotic motion. Int J Adapt Control Signal Process 4:543–564 (1990)

    Google Scholar 

  10. Egeland O, Godhavn JM (1994) Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Trans Autom Control 39:842–846

    MathSciNet  MATH  Google Scholar 

  11. Gravdahl JT, Egeland O (1999) Compressor surge and rotating stall: modeling and control. Advances in industrial control. Springer, London

    Google Scholar 

  12. Jeltsema DJ, Sherpen JMA (2004) Tuning of passivity-preserving controllers for switched-mode power converters. IEEE Trans Autom Control 49(8):1333–1344

    MathSciNet  MATH  Google Scholar 

  13. Jeltsema DJ, Ortega R, Sherpen JMA (2003) On passivity and power balance inequalities of nonlinear RLC circuits. IEEE Trans Circuits Syst I-Fundam Theory Appl 50(9):1174–1179

    MathSciNet  MATH  Google Scholar 

  14. Sira-Ramirez H, Ortega R, Garcia-Esteban M (1997) Adaptive passivity-based control of average DC to DC power converters models. Int J Adapt Control Signal Process 11:489–499

    MATH  Google Scholar 

  15. Sira-Ramirez H, Moreno RAP, Ortega R, Esteban MG (1997) Passivity-based controllers for the stabilization of DC to DC power converters. Automatica 33(4):499–513

    MathSciNet  MATH  Google Scholar 

  16. Angulo-Nunez MI, Sira-Ramirez H (1998) Flatness in the passivity based control of DC to DC power converters. In: Proceedings of the 37th IEEE conference on decision and control. Tampa, FL, USA, pp 4115–4120

    Google Scholar 

  17. Escobar G, Sira-Ramirez H (1998) A passivity based sliding mode control approach for the regulation of power factor precompensators. In: Proceedings of the 37th IEEE conference on decision and control. Tampa, FL, USA, pp 2423–2424

    Google Scholar 

  18. Yu W, Li X (2001) Some stability properties of dynamic neural networks. IEEE Trans Circuits Syst-I: Fundam Theory Appl 48(2):256–259

    MATH  Google Scholar 

  19. Yu W (2003) Passivity analysis for dynamic multilayer neuro identifier. IEEE Trans Circuits Syst I-Fundam Theory Appl 50(1):173–178

    MathSciNet  MATH  Google Scholar 

  20. Danciu D, Rasvan V (2000) On Popov-type stability criteria for neural networks. Electron J Qual Theory Differ Equ (23):1–10. Proceedings of the 6th Coll. QTDE, no 23, August 10–14 1999, Szeged, Hungary

    Google Scholar 

  21. Hayakawa T, Haddad WM, Bailey JM, Hovakimyan N (2005) Passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems. IEEE Trans Neural Netw 16(2):387–398

    Google Scholar 

  22. Gorbet RB, Morris KA, Wang DWL (2001) Passivity-based stability and control hysteresis in smart actuators. IEEE Trans Control Syst Technol 9(1):5–16

    Google Scholar 

  23. Kugi A, Schaler K (2002) Passivitätsbasierte regelung piezoelektrischer strukturen. Automatisierungtechnik 50(9):422–431

    Google Scholar 

  24. Diolaiti N, Niemeyer G, Barbagli F, Salisbury JK (2006) Stability of haptic rendering: discretization, quantization, time delay, and Coulomb effects. IEEE Trans Robot 22(2):256–268

    Google Scholar 

  25. Mahvash M, Hayward V (2005) High-fidelity passive force-reflecting virtual environments. IEEE Trans Robot 21(1):38–46

    Google Scholar 

  26. Ryu JH, Preusche C, Hannaford B, Hirzinger G (2005) Time domain passivity control with reference energy following. IEEE Trans Control Syst Technol 13(5):737–742

    Google Scholar 

  27. Ryu JH, Hannaford B, Kwon DS, Kim JH (2005) A simulation/experimental study of the noisy behaviour of the time domain passivity controller. IEEE Trans Robot 21(4):733–741

    Google Scholar 

  28. Lee D, Spong MW (2006) Passive bilateral teleoperation with constant time delay. IEEE Trans Robot 22(2):269–281

    Google Scholar 

  29. Lee D, Li PY (2005) Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators. IEEE Trans Robot 21(5):936–950

    Google Scholar 

  30. Lozano R, Chopra N, Spong MW (2002) Passivation of force reflecting bilateral teleoperators with time varying delay. Mechatronics 2002: proceedings of the 8th mechatronics forum international conference. Drebbel Institute for Mechatronics, Enschede, NL, pp 24–26

    Google Scholar 

  31. Lee JH, Cho CH, Kim M, Song JB (2006) Haptic interface through wave transformation using delayed reflection: application to a passive haptic device. Adv Robot 20(3):305–322

    Google Scholar 

  32. Colgate JE, Schenkel G (1997) Passivity of a class of sampled-data systems: application to haptic interface. J Robot Syst 14(1):37–47

    Google Scholar 

  33. Shen X, Goldfarb M (2006) On the enhanced passivity of pneumatically actuated impedance-type haptic interfaces. IEEE Trans Robot 22(3):470–480

    Google Scholar 

  34. Diez MD, Lie B, Ydstie BE (2002) Passivity-based control of particulate processes modeled by population balance equations. In: proceedings of 4th world congress on particle technology. Sydney, Australia

    Google Scholar 

  35. Duncan PC, Farschman CA, Ydstie BE (2000) Distillation stability using passivity and thermodynamics. Comput Chem Eng 24:317–322

    Google Scholar 

  36. Sira-Ramirez H, Angulo-Nunez MI (1997) Passivity based control of nonlinear chemical processes. Int J Control 68(5):971–996

    MathSciNet  MATH  Google Scholar 

  37. Sira-Ramirez H (2000) Passivity versus flatness in the regulation of an exothermic chemical reactor. Eur J Control 6(3):1–17

    MATH  Google Scholar 

  38. Fossas E, Ros RM, Sira-Ramirez H (2004) Passivity-based control of a bioreactor system. J Math Chem 36(4):347–360

    MathSciNet  MATH  Google Scholar 

  39. Ydstie BE, Alonso AA (1997) Process systems and passivity via the Clausius-Planck inequality. Syst Control Lett 30:253–264

    MathSciNet  MATH  Google Scholar 

  40. Léchevin N, Rabbath CA, Sicard P (2005) A passivity perspective for the synthesis of robust terminal guidance. IEEE Trans Control Syst Technol 13(5):760–765

    Google Scholar 

  41. Mahony RE, Lozano R (1999) An energy based approach to the regulation of a model helicopter near to hover. In: Proceedings of the European control conference. Karlsruhe, Germany, pp 2120–2125

    Google Scholar 

  42. Miras JD, Charara A (1998) A vector oriented control for a magnetically levitated shaft. IEEE Trans Magn 34(4):2039–2041

    Google Scholar 

  43. Miras JD, Charara A (1999) Vector desired trajectories for high rotor speed magnetic bearing stabilization. IFAC Proc Vol 32(2):49–54

    Google Scholar 

  44. Haddad WM, Chellaboina V (2005) Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal, R World Appl 6:35–65

    MathSciNet  MATH  Google Scholar 

  45. Haddad WM, Chellaboina V, Rajpurobit T (2004) Dissipativity theory for nonnegative and compartmental dynamical systems with time delay. IEEE Trans Autom Control 49(5):747–751

    MathSciNet  MATH  Google Scholar 

  46. Ydstie BE, Jiao Y (2004) Passivity based inventory and flow control in flat glass manufacture. In: Proceedings of the 43rd IEEE international conference on decision and control. Nassau, Bahamas, pp 4702–4707

    Google Scholar 

  47. Kawai H, Murao T, Fujita M (2005) Passivity based dynamic visual feedback control with uncertainty of camera coordinate frame. In: Proceedings of the American control conference. Portland, OR, USA, pp 3701–3706

    Google Scholar 

  48. Desoer CA, Vidyasagar M (1975) Feedback systems: input-output properties. Academic, New York

    MATH  Google Scholar 

  49. Jonsson U (1997) Stability analysis with Popov multipliers and integral quadratic constraints. Syst Control Lett 31:85–92

    MathSciNet  MATH  Google Scholar 

  50. Kailath T (1980) Linear systems. Prentice-Hall, New Jersey

    Google Scholar 

  51. Fradkov AL (2003) Passification of non-square linear systems and feedback Yakubovich-Kalman-Popov Lemma. Eur J Control 6:573–582

    MATH  Google Scholar 

  52. Willems JC (1972) Dissipative dynamical systems, part i: general theory. Arch Rat Mech An 45:321–351

    MATH  Google Scholar 

  53. Willems JC (1972) Dissipative dynamical systems, part ii: linear systems with quadratic supply rates. Arch Rat Mech An 45:352–393

    MATH  Google Scholar 

  54. Hill DJ, Moylan PJ (1980) Connections between finite-gain and asymptotic stability. IEEE Trans Autom Control 25(5):931–936

    MathSciNet  MATH  Google Scholar 

  55. Hill DJ, Moylan PJ (1976) The stability of nonlinear dissipative systems. IEEE Trans Autom Control 21(5):708–711

    MathSciNet  MATH  Google Scholar 

  56. Byrnes CI, Isidori A, Willems JC (1991) Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans Autom Control 36(11):1228–1240

    MathSciNet  MATH  Google Scholar 

  57. Rudin W (1998) Analyse Réelle et complexe. Dunod, Paris

    Google Scholar 

  58. Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw Hill, New York

    Google Scholar 

  59. Rudin W (1987) Real and complex analysis, 3rd edn. Higher maths. McGraw Hill, New York

    MATH  Google Scholar 

  60. Datko R (1970) Extending a theorem of A.M. Lyapunov to Hilbert space. J Math Anal Appl 32:610–616

    Google Scholar 

  61. Pazy A (1972) On the applicability of Lyapunov’s theorem in Hilbert space. SIAM J Math Anal 3:291–294

    MathSciNet  MATH  Google Scholar 

  62. Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems. Texts in applied mathematics, vol 6, 2nd edn. Springer, New York (1998)

    Google Scholar 

  63. Vidyasagar M (1993) Nonlinear systems analysis, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  64. Willems JC (1971) The generation of Lyapunov functions for input-output stable systems. SIAM J Control 9:105–133

    MathSciNet  MATH  Google Scholar 

  65. Trentelman HL, Willems JC (1997) Every storage function is a state function. Syst Control Lett 32:249–259

    MathSciNet  MATH  Google Scholar 

  66. Yuliar S, James MR, Helton JW (1998) Dissipative control systems synthesis with full state feedback. Math Control Signals Syst 11:335–356

    MathSciNet  MATH  Google Scholar 

  67. James MR (1993) A partial differential inequality for dissipative nonlinear systems. Syst Control Lett 21:315–320

    MathSciNet  MATH  Google Scholar 

  68. Hill DJ, Moylan PJ (1980) Dissipative dynamical systems: basic input-output and state properties. J Frankl Inst 30(5):327–357

    MathSciNet  MATH  Google Scholar 

  69. Pota HR, Moylan PJ (1993) Stability of locally dissipative interconnected systems. IEEE Trans Autom Control 38(2):308–312

    MathSciNet  MATH  Google Scholar 

  70. Polushin IG, Marquez HJ (2004) Boundedness properties of nonlinear quasi-dissipative systems. IEEE Trans Autom Control 49(12):2257–2261

    MathSciNet  MATH  Google Scholar 

  71. Fradkov AL, Puloshin IG (1997) Quasidissipative systems with one or several supply rates. In: Proceedings of the European control conference. Brussels, Belgium, pp 1237–1242

    Google Scholar 

  72. Pavel L, Fairman W (1997) Nonlinear \(H_{\infty }\) control: a \(j-\)dissipative approach. IEEE Trans Autom Control 42(12):1636–1653

    MathSciNet  MATH  Google Scholar 

  73. Lim S, How JP (2002) Analysis of linear parameter-varying systems using a non-smooth dissipative systems framework. Int J Robust Nonlinear Control 12:1067–1092

    MathSciNet  MATH  Google Scholar 

  74. Hughes TH (2018) On the optimal control of passive or non-expansive systems. IEEE Trans Autom Control 63(12):4079–4093

    MATH  Google Scholar 

  75. Polushin IG, Marquez HJ (2002) On the existence of a continuous storage function for dissipative systems. Syst Control Lett 46:85–90

    MathSciNet  MATH  Google Scholar 

  76. van der Schaft AJ (2017) \(L2\)-gain and passivity techniques in nonlinear control, 3rd edn. Communications and control engineering. Springer Int. Publishing AG, Berlin

    Google Scholar 

  77. Isidori A (1999) Nonlinear control systems II. Communications and control engineering. Springer, London

    MATH  Google Scholar 

  78. Romanchuk BG, Smith MC (1999) Incremental gain analysis of piecewise linear systems and application to the antiwindup problem. Automatica 35(7):1275–1283

    MathSciNet  MATH  Google Scholar 

  79. Monshizadeh N, Lestas I (2019) Secant and Popov-like conditions in power network stability. Automatica 101:258–268

    MathSciNet  MATH  Google Scholar 

  80. Demidovich BP (1961) On the dissipativity in the whole of a non-linear system of differential equations. I. Vestnik Moscow State University, Ser Mat Mekh, vol 6, pp 19–27. In Russian

    Google Scholar 

  81. Demidovich BP (1962) On the dissipativity of a non-linear system of differential equations. II. Vestnik Moscow State University, Ser Mat Mekh vol 1, pp 3–8. In Russian

    Google Scholar 

  82. Pavlov A, Pogromsky A, van de Wouw N, Nijmeijer H (2004) Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst Control Lett 52:257–261

    MathSciNet  MATH  Google Scholar 

  83. Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696

    MathSciNet  MATH  Google Scholar 

  84. Yoshizawa T (1966) Stability theory by Liapunov’s second method. Mathematics Society, Tokyo

    MATH  Google Scholar 

  85. Yoshizawa T (1975) Stability theory and the existence of periodic solutions and almost periodic solutions. Springer, New York

    MATH  Google Scholar 

  86. Pavlov A, Marconi L (2008) Incremental passivity and output regulation. Syst Control Lett 57:400–409

    MathSciNet  MATH  Google Scholar 

  87. Pang H, Zhao J (2018) Output regulation of switched nonlinear systems using incremental passivity. Nonlinear Anal: Hybrid Syst 27:239–257

    MathSciNet  MATH  Google Scholar 

  88. Besselink B, van de Wouw N, Nijmeijer H (2013) Model reduction for nonlinear systems with incremental gain or passivity properties. Automatica 49:861–872

    MathSciNet  MATH  Google Scholar 

  89. Jayawardhana B, Ortega R, Garcia-Canseco E, Castanos F (2007) Passivity of nonlinear incremental systems: application to PI stabilization of nonlinear circuits. Syst Control Lett 56:618–622

    MathSciNet  MATH  Google Scholar 

  90. Gadjov D, Pavel L (2018) A passivity-based approach to Nash equilibrium seeking over networks. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2018.2833140

    Article  MATH  Google Scholar 

  91. Hines G, Arcak M, Packard A (2011) Equilibrium-independent passivity: a new definition and numerical certification. Automatica 47(9):1949–1956

    MathSciNet  MATH  Google Scholar 

  92. Bürger M, Zelazo D, Allgöwer F (2014) Duality and network theory in passivity-based cooperative control. Automatica 50(8):2051–2061

    MathSciNet  MATH  Google Scholar 

  93. Simpson-Porco JW (2018) Equilibrium-independent dissipativity with quadratic suppy rates. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2018.2838664

    Article  MATH  Google Scholar 

  94. Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces. Canadian mathematics society, Science Mathématique du Canada. Springer Science+Business Media, Berlin

    MATH  Google Scholar 

  95. Anderson BDO, Vongpanitlerd S (1973) Network analysis and synthesis: a modern systems theory approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  96. Madeira DS, Adamy J (2016) On the equivalence between strict positive realness and strict passivity of linear systems. IEEE Trans Autom Control 61(10):3091–3095

    MathSciNet  MATH  Google Scholar 

  97. Kottenstette N, McCourt M, Xia M, Gupta V, Antsaklis P (2014) On relationships among passivity, positive realness, and dissipativity in linear systems. Automatica 50:1003–1016

    MathSciNet  MATH  Google Scholar 

  98. Polushin IG, Marquez HJ (2004) Conditions for the existence of continuous storage functions for nonlinear dissipative systems. Syst Control Lett 54:73–81

    MathSciNet  MATH  Google Scholar 

  99. Rockafellar RT, Wets RJB (1998) Variational analysis, Grundlehren der Mathematischen Wissenschaften, vol 317. Springer, Berlin

    Google Scholar 

  100. Rosier L, Sontag ED (2000) Remarks regarding the gap between continuous, Lipschitz, and differentiable storage functions for dissipation inequalities appearing in \(H_{\infty }\) control. Syst Control Lett 41:237–249

    MathSciNet  MATH  Google Scholar 

  101. Damaren CJ (2000) Passivity and noncollocation in the control of flexible multibody systems. ASME J Dyn Syst Meas Control 122:11–17

    Google Scholar 

  102. Bruni C, Pillo GD, Koch G (1974) Bilinear systems: an appealing class of “nearly linear” systems in theory and applications. IEEE Trans Autom Control 19(4):334–348

    MathSciNet  MATH  Google Scholar 

  103. Xie S, Xie L, de Souza CE (1998) Robust dissipative control for linear systems with dissipative uncertainty. Int J Control 70(2):169–191

    MathSciNet  MATH  Google Scholar 

  104. Imura JI, Sugie T, Yoshikawa T (1996) A Hamilton-Jacobi inequality approach to the strict \({H}_{\infty }\) control problem of nonlinear systems. Automatica 32(4):645–650

    MathSciNet  MATH  Google Scholar 

  105. Faurre P, Clerget M, Germain F (1979) Opérateurs Rationnels Positifs. Application à l’Hyperstabilité et aux Processus Aléatoires. Méthodes Mathématiques de l’Informatique. Dunod, Paris. In French

    Google Scholar 

  106. Lin W (1995) Feedback stabilization of general nonlinear control systems: a passive system approach. Syst Control Lett 25:41–52

    MathSciNet  MATH  Google Scholar 

  107. Chua LO (1971) Memristors - the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Google Scholar 

  108. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223

    MathSciNet  Google Scholar 

  109. Hiriart-Urruty JB, Lemaréchal C (2001) Fundamentals of convex analysis. Grundlehren text editions. Springer, Berlin

    MATH  Google Scholar 

  110. Lancaster P, Tismenetsky M (1985) The theory of matrices. Academic, New York

    MATH  Google Scholar 

  111. Weiss H, Wang Q, Speyer JL (1994) System characterization of positive real conditions. IEEE Trans Autom Control 39(3):540–544

    MathSciNet  MATH  Google Scholar 

  112. Hodaka I, Sakamoto N, Suzuki M (2000) New results for strict positive realness and feedback stability. IEEE Trans Autom Control 45(4):813–819

    MathSciNet  MATH  Google Scholar 

  113. Lions PL, Souganidis PE (1985) Differential games, optimal control and directional derivatives of viscosity solutions of Bellman’s and Isaac’s equations. SIAM J Control Optim 23:566–583

    MathSciNet  MATH  Google Scholar 

  114. Ball JA, Helton JW (1996) Viscosity solutions of Hamilton-Jacobi equations arising in nonlinear \(h_{\infty }\)-control. J Math Syst Estim Control 6(1):1–22

    MathSciNet  Google Scholar 

  115. Cromme M (1988) On dissipative systems and set stability. MAT-Report no 1998-07, April, Technical University of Denmark, Department of Mathematics

    Google Scholar 

  116. Moylan PJ (1974) Implications of passivity in a class of nonlinear systems. IEEE Trans Autom Control 19(4):373–381

    MathSciNet  MATH  Google Scholar 

  117. Moylan PJ, Anderson BDO (1973) Nonlinear regulator theory and an inverse optimal control problem. IEEE Trans Autom Control 18:460–465

    MathSciNet  MATH  Google Scholar 

  118. Kalman RE (1964) When is a linear control system optimal? Trans ASME (J Basic Eng) Ser D 86:51–60 (1964)

    Google Scholar 

  119. El-Farra NH, Christofides PD (2003) Robust inverse optimal control laws for nonlinear systems. Int J Robust Nonlinear Control 13:1371–1388

    MathSciNet  MATH  Google Scholar 

  120. Wan CJ, Bernstein DS (1995) Nonlinear feedback control with global stabilization. Dyn Control 5(4):321–346

    MathSciNet  MATH  Google Scholar 

  121. Chellaboina V, Haddad WM (2003) Exponentially dissipative dynamical systems: a nonlinear extension of strict positive realness. Math Probl Eng 1:25–45

    MathSciNet  MATH  Google Scholar 

  122. Byrnes CI, Lin W (1994) Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems. IEEE Trans Autom Control 39(1):83–98

    MathSciNet  MATH  Google Scholar 

  123. Lin W, Byrnes CI (1995) Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica 31(2):263–267

    MathSciNet  MATH  Google Scholar 

  124. Lopez EMN, Fossas-Colet E (2004) Feedback passivity of nonlinear discrete-time systems with direct input-output link. Automatica 40(8):1423–1428

    MathSciNet  MATH  Google Scholar 

  125. Lopez EMN (2002) Dissipativity and passivity-related properties in nonlinear discrete-time systems. PhD thesis, Universidad Politecnica de Cataluna, Instituto de Organizacion y Control de Sistemas Industriales, Spain

    Google Scholar 

  126. Lopez EMN (2005) Several dissipativity and passivity implications in the linear discrete-time setting. Math Probl Eng 6:599–616

    MathSciNet  MATH  Google Scholar 

  127. Haddad WM, Chellaboina V (1998) Nonlinear fixed-order dynamic compensation for passive systems. Int J Robust Nonlinear Control 8(4–5):349–365

    MathSciNet  MATH  Google Scholar 

  128. van der Schaft AJ (2000) \(L2\)-gain and passivity techniques in nonlinear control, 2nd edn. Communications and control engineering. Springer, London

    Google Scholar 

  129. Adly S, Hantoute A, Le B (2016) Nonsmooth Lur’e dynamical systems in Hilbert spaces. Set-Valued Var Anal 24:13–35

    MathSciNet  MATH  Google Scholar 

  130. Adly S, Hantoute A, Le BK (2017) Maximal monotonicity and cyclic monotonicity arising in nonsmooth Lur’e dynamical systems. J Math Anal Appl 448:691–706

    MathSciNet  MATH  Google Scholar 

  131. Yakubovich VA (1975) The frequency theorem for the case in which the state space and the control space are Hilbert spaces, and its application incertain problems in the synthesis of optimal control. II. Sib Math J 16:828–845

    Google Scholar 

  132. Yakubovich VA (1974) The frequency theorem for the case in which the state space and the control space are Hilbert spaces, and its application incertain problems in the synthesis of optimal control. I. Sib Math J 15:457–476

    Google Scholar 

  133. Likhtarnikov AL, Yakubovich VA (1977) The frequency theorem for one-parameter semigroups. Math USSR Izv (Izv Akad Nauk SSSR, Ser Mat) 11(4):849–864

    Google Scholar 

  134. Likhtarnikov AL, Yakubovich VA (1977) Frequency theorem for evolution type equations. Sib Mat Zh 17:1069–1085 In Russian

    MATH  Google Scholar 

  135. Wen JT (1989) Finite dimensional controller design for infinite dimensional systems: the circle criterion approach. Syst Control Lett 13:445–454

    MathSciNet  MATH  Google Scholar 

  136. Brogliato B, Goeleven D (2011) Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlinear Analysis. Nonlinear Analysis Theory, Methods Appl 74:195–212

    Google Scholar 

  137. Brogliato B (2004) Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Syst Control Lett 51:343–353. Preliminary version proceedings of the 40th IEEE conference on decision and control, 4–7 December 2001, vol 1, pp 27–32

    Google Scholar 

  138. Brogliato B, Goeleven D (2013) Existence, uniqueness of solutions and stability of nonmsooth multivalued Lur’e dynamical systems. J Convex Anal 20(3):881–900

    MathSciNet  MATH  Google Scholar 

  139. Camlibel MK, Schumacher JM (2016) Linear passive systems and maximal monotone mappings. Math Program Ser B 157:367–420

    MathSciNet  MATH  Google Scholar 

  140. Tanwani A, Brogliato B, Prieur C (2018) Well-posedness and output regulation for implicit time-varying evolution variational inequalities. SIAM J Control Optim 56(2):751–781

    MathSciNet  MATH  Google Scholar 

  141. Brogliato B, Thibault L (2010) Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J Convex Anal 17(3–4):961–990

    MathSciNet  MATH  Google Scholar 

  142. Brézis H (1983) Analyse Fonctionnelle, Théorie et Applications. Masson, Paris

    MATH  Google Scholar 

  143. Curtain RF (1996) The Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems. Syst Control Lett 27:67–72

    MathSciNet  MATH  Google Scholar 

  144. Curtain RF, Oostveen JC (2001) The Popov criterion for strongly stable distributed parameter systems. Int J Control 74:265–280

    MathSciNet  MATH  Google Scholar 

  145. Curtain RF, Demetriou M, Ito K (2003) Adaptive compensators for perturbed positive real infinite dimensional systems. Int J Appl Math Comput Sci 13(4):441–452

    Google Scholar 

  146. Pandolfi L (2001) Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach. Int J Appl Math Comput Sci 11(6):1249–1260

    MathSciNet  MATH  Google Scholar 

  147. Curtain RF (1996) Corrections to “The Kalman-Yakubovich-Popov Lemma for Pritchard-Salamon systems”. Syst Control Lett 28:237–238

    MATH  Google Scholar 

  148. Bounit H, Hammouri H (1998) Stabilization of infinite-dimensional semilinear systems with dissipative drift. Appl Math Optim 37:225–242

    MathSciNet  MATH  Google Scholar 

  149. Bounit H, Hammouri H (2003) A separation principle for distributed dissipative bilinear systems. IEEE Trans Autom Control 48(3):479–483

    MathSciNet  MATH  Google Scholar 

  150. Weiss M (1997) Riccati equation theory for Pritchard-Salamon systems: a Popov function approach. IMA J Math Control Inf 14:45–83

    MathSciNet  MATH  Google Scholar 

  151. Barb FD, de Koning W (1995) A Popov theory based survey in digital control of infinite dimensional systems with unboundedness. IMA J Math Control Inf 12:253–298

    MATH  Google Scholar 

  152. Barb FD, Ionescu V, de Koning W (1994) A Popov theory based approach to digital \(h_{\infty }\) control with measurement feedback for Pritchard-Salamon systems. IMA J Math Control Inf 11:277–309

    MATH  Google Scholar 

  153. Ionescu V, Oara C (1996) The four block Nehari problem: a generalized Popov-Yakubovich type approach. IMA J Math Control Inf 13:173–194

    MathSciNet  MATH  Google Scholar 

  154. Arov DZ, Staffans OJ (2005) The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality. Oper Theory: Adv Appl 1:1–37

    MATH  Google Scholar 

  155. Bondarko VA, Fradkov AL (2003) Necessary and sufficient conditions for the passivicability of linear distributed systems. Autom Remote Control 64(4):517–530

    MathSciNet  MATH  Google Scholar 

  156. Grabowski P, Callier FM (2006) On the circle criterion for boundary control systems in factor form: Lyapunov stability and Lur’e equations. ESAIM Control, Optim Calc Var 12:169–197

    MathSciNet  MATH  Google Scholar 

  157. Hagen G (2006) Absolute stability via boundary control of a semilinear parabolic PDE. IEEE Trans Autom Control 51(3):489–493

    MathSciNet  MATH  Google Scholar 

  158. Logemann HL, Curtain RF (2000) Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control. ESAIM: Control, Optim Calc Var 5:395–424 (2000)

    Google Scholar 

  159. Arcak M, Meissen C, Packard A (2016) Networks of dissipative systems. Briefs in electrical and computer engineering. Control, automation and robotics. Springer International Publishing, Berlin

    Google Scholar 

  160. Cheban DN (1999) Relationship between different types of stability for linear almost periodic systems in Banach spaces. Electron J Differ Equ 46:1–9. https://ejde.math.swt.edu

  161. Hale JK, LaSalle JP, Slemrod M (1971) Theory of a class of dissipative processes. Division of applied mathematics, Center for Dynamical Systems, Brown University, Providence Rhode Island, USA, no 71-17408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brogliato, B., Lozano, R., Maschke, B., Egeland, O. (2020). Dissipative Systems. In: Dissipative Systems Analysis and Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-19420-8_4

Download citation

Publish with us

Policies and ethics