Skip to main content

Coatings in the Postharvest

  • Chapter
  • First Online:
Polymers for Agri-Food Applications

Abstract

The development of new edible coatings (ECs) with improved functionality and performance for fresh and minimally processed fruits and vegetables is one of the challenges of the postharvest industry. This technique has been successful not only in reducing water loss and delaying senescence, but also in increasing the antimicrobial properties of the coated product. The new generation of ECs is specially designed to allow the incorporation and/or controlled release of antioxidants, vitamins, nutraceuticals and natural antimicrobial agents by means of the application of promising technologies such as nanoencapsulation and layer-by-layer (LbL) assembly. This review analyzes the maintenance of postharvest quality through the application of new ECs on fresh products that cover the use of nanoemulsions, nanoparticles, nanofibers and LbL as techniques to form active edible coatings and films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Fani, A., Salvia-Trujillo, L., & Rojas-Grau, M. A. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168–177. https://doi.org/10.1016/j.foodhyd.2015.01.032.

    Article  CAS  Google Scholar 

  • Álvarez, K., Famá, L., & Gutiérrez, T. J. (2017). Chapter 12. Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 1 (pp. 358–400). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108–454–1. eISBN: 978–1–68108–453–4. https://doi.org/10.2174/9781681084534117010015.

    Chapter  Google Scholar 

  • Álvarez, K., Alvarez, V. A., & Gutiérrez, T. J. (2018). Chapter 3. Biopolymer composite materials with antimicrobial effects applied to the food industry. In V. K. Thakur & M. K. Thakur (Eds.), Functional biopolymers (pp. 57–96). Editorial Springer International Publishing. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0. https://doi.org/10.1007/978-3-319-66417-0_3.

    Google Scholar 

  • Ansorena, M. R., Marcovich, N. E., & Roura, S. I. (2011). Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology, 59(1), 53–63. https://doi.org/10.1016/j.postharvbio.2010.08.011.

    Article  CAS  Google Scholar 

  • Antoniou, J., Liu, F., Majeed, H., & Zhong, F. (2015). Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids, 44, 309–319. https://doi.org/10.1016/j.foodhyd.2014.09.023.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., González-Aguilar, G. A., Ansorena, M. R., Alvarez-Párrilla, E., & de la Rosa, L. (2014). Nanotechnology tools to achieve food safety. Chapter 17. In R. Bhat & V. M. Gómez-López (Eds.), Practical food safety: Contemporary issues and future directions (pp. 341–353). Editorial Wiley-Blackwell. ISBN: 978–1–118–47460–0. 632. https://doi.org/10.1002/9781118474563.ch17.

    Chapter  Google Scholar 

  • Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2013). Effect of limonene incorporation into gellan-based edible coating on the changes in microbiological and sensory characteristics of fresh-cut pineapple during cold storage. Acta Horticulturae, (1012), 999–1004. https://doi.org/10.17660/actahortic.2013.1012.134.

  • Baker, R. A., & Nisperos-Carriedo, M. O. (1994). Edible coatings and films for processed foods. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 89–104). Lancaster: Technomic Publishing Co., Inc.

    Google Scholar 

  • Baldwin, E. A., & Baker, R. A. (2002). Use of proteins in edible coatings for whole and minimally processed fruits and vegetables. In A. Gennadios (Ed.), Protein based films and coatings (pp. 501–515). Boca Raton: CRC Press.

    Google Scholar 

  • Bourtoom, T. (2008). Edible films and coatings: Characteristics and properties. International Food Research Journal, 15, 237–248.

    Google Scholar 

  • Bracone, M., Merino, D., González, J., Alvarez, V. A., & Gutiérrez, T. J. (2016). Chapter 6. Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Natural polymers: Derivatives, blends and composites. Ikram, S., & Ahmed, S. (Eds). Editorial Nova Science Publishers, Inc. New York. EE.UU. ISBN: 978-1-63485-831-1. pp. 119–155.

    Google Scholar 

  • Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT – Food Science and Technology, 47(1), 39–45. https://doi.org/10.1016/j.lwt.2012.01.005.

    Article  CAS  Google Scholar 

  • Brecht, J. K., Felkey, K., Bartz, J. A., Schneider, K. R., Saltveit, M. E., & Talcott, S. T. (2004). Fresh-cut vegetables and fruits. In J. Janick (Ed.), Horticultural reviews (Vol. 30, pp. 185–251). Wiley. https://doi.org/10.1002/9780470650837.ch6.

    Chapter  Google Scholar 

  • Brody, A. L. (2007). Nanocomposites technology in food packaging. Food Technology, 61, 80–83.

    CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

    Article  CAS  PubMed  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875. https://doi.org/10.1007/s11947-010-0434-1.

    Article  CAS  Google Scholar 

  • De Abreu, D. A. P., Losada, P. P., Angulo, I., & Cruz, J. M. (2007). Development of new polyolefin films with nanoclays for application in food packaging. European Polymer Journal, 43(6), 2229–2243. https://doi.org/10.1016/j.eurpolymj.2007.01.021.

    Article  CAS  Google Scholar 

  • Debeaufort, F., Quezada-Gallo, J. A., & Voilley, A. (1998). Edible films and coatings: tomorrow’s packagings: A review. Critical Reviews in Food Science and Nutrition, 38(4), 299–313. https://doi.org/10.1080/10408699891274219.

    Article  CAS  PubMed  Google Scholar 

  • Decher, J. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277, 1232–1237. https://doi.org/10.1126/science.277.5330.1232.

    Article  CAS  Google Scholar 

  • Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT-Food Science and Technology, 62(1), 801–806. https://doi.org/10.1016/j.lwt.2014.09.036.

    Article  CAS  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruit and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450. https://doi.org/10.1080/10408398.2010.541568.

    Article  CAS  PubMed  Google Scholar 

  • Donsì, F., Marchese, E., Maresca, P., Pataro, G., Vu, K. D., Salmieri, S., Lacroix, M., & Ferrari, G. (2015). Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology, 106, 21–32. https://doi.org/10.1016/j.postharvbio.2015.02.006.

    Article  CAS  Google Scholar 

  • Duan, J., & Zhang, S. (2013). Application of chitosan based coating in fruit and vegetable preservation: A review. Journal of Food Processing and Technology, 4, 227–258. https://doi.org/10.4172/2157-7110.1000227.

    Article  Google Scholar 

  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. https://doi.org/10.1016/j.jcis.2011.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran, N., & Marcato, P. D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. International Journal of Food Science and Technology, 48(6), 1127–1134. https://doi.org/10.1111/ijfs.12027.

    Article  CAS  Google Scholar 

  • Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33(6), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010.

    Article  CAS  Google Scholar 

  • Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004.

    Article  CAS  Google Scholar 

  • Florez-López, M. L., Cerqueira, M. A., de Rodríguez, D. J., & Vicente, A. A. (2016). Perspectives on utilization of edible coatings and nano-laminate coatings for exten- Sion of postharvest storage of fruit and vegetables. Food Engineering Reviews, 8(3), 292–305. https://doi.org/10.1007/s12393-015-9135-x.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J. (2017a). Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydrate Polymers, 165, 169–179. https://doi.org/10.1016/j.carbpol.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez, T. J. (2017b). Chapter 8. Chitosan applications for the food industry. In: Chitosan: Derivatives, composites and applications. Ahmed, S., & Ikram, S. (Eds). WILEY-Scrivener Publisher. EE.UU. ISBN: 978–1–119-36350-7. pp. 183–232. https://doi.org/10.1002/9781119364849.ch8

    Chapter  Google Scholar 

  • Gutiérrez, T. J. (2018). Active and intelligent films made from starchy sources/blackberry pulp. Journal Polymers and the Environment, 26(6), 2374–2391. https://doi.org/10.1007/s10924-017-1134-y.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 4. Transport phenomena in biodegradable and edible films. In M. A. Masuelli (Ed.), Biopackaging (pp. 58–88). Miami., EE.UU. ISBN: 978–1–4987–4968–8: Editorial CRC Press Taylor & Francis Group.

    Google Scholar 

  • Gutiérrez, J. M., González, C., Maestro, A., Solè, I. M. P. C., & Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid and Interface Science, 13(4), 245–251. https://doi.org/10.1016/j.cocis.2008.01.005.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283–292. https://doi.org/10.1016/j.matchemphys.2017.03.052.

    Article  CAS  Google Scholar 

  • Hammond, H. (2012). Building biomedical materials layer-by-layer. Materials Today, 15(5), 196–206. https://doi.org/10.1016/S1369-7021(12)70090-1.

    Article  CAS  Google Scholar 

  • Hardenburg, R. E. (1967). Wax and related coatings for horticultural products: A bibliography. In Agricultural Research Service ARS 51–15 (p. 26). Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Hassan, B., Ali, S., Chatha, S., Hussain, A., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097.

    Article  CAS  PubMed  Google Scholar 

  • Hodges, D. M., & Toivonen, P. M. A. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biology and Technology, 48(2), 155–162. https://doi.org/10.1016/j.postharvbio.2007.10.016.

    Article  Google Scholar 

  • Jiang, B. B., & Li, B. Y. (2009). Tunable drug loading and release from polypeptide multilayer nanofilms. International Journal of Nanomedicine, 4(1), 37–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: A review. Food Technology, 40(12), 47–59.

    CAS  Google Scholar 

  • Kim, I. H., Lee, H., Kim, J. E., Son, K. B., Lee, Y. S., Chung, D. S., & Min, S. C. (2013). Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. Journal of Food Science, 78(10), 1551–1559. https://doi.org/10.1111/1750-3841.12244.

    Article  CAS  Google Scholar 

  • Kotsilkova, R., Silvestre, C., & Cimmino, S. (2007). Thermoset nanocomposites for engineering applications. In R. Kotsilkova (Ed.), Thermoset nanocomposites for engineering applications (pp. 93–116). Shawbury: Rapra Technology.

    Google Scholar 

  • Krochta, J. M. (1992). Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. In R. P. Singh & M. A. Wirakartakasumah (Eds.), Advances in food engineering (pp. 517–538). Boca Raton: CRC Press.

    Google Scholar 

  • Krochta, J. M. (1997). Edible protein films and coatings. In S. Damodaran & A. Paraf (Eds.), Food proteins and their applications. New York: Marcel Dekker.

    Google Scholar 

  • Lagaron, J.M. (2005). Biodegradable and sustainable plastics as essential elements in novel bioactive packaging technologies. In: First conference on biodegradable polymers for packaging applications. PIRA International, Leatherhead (UK). 5–6 July 2005.

    Google Scholar 

  • Lamikanra, O., & Watson, M. A. (2004). Effect of calcium treatment temperature on fresh-cut cantaloupe melon during storage. Journal of Food Science, 69(6), 468–472. https://doi.org/10.1111/j.1365-2621.2004.tb10990.x.

    Article  Google Scholar 

  • Lawrence, J. F., & Iyengar, J. R. (1983). Determination of paraffin wax and mineral oil on fresh fruits and vegetables by high temperature gas chromatography. Journal of Food Safety, 5(3), 119–129. https://doi.org/10.1111/j.1745-4565.1983.tb00464.x.

    Article  CAS  Google Scholar 

  • Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruit and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–75. https://doi.org/10.1111/j.1541-4337.2007.00018.x.

    Article  CAS  Google Scholar 

  • Lopez-Rubio, A., Almenar, E., Hernandez-Munoz, P., Lagaron, J. M., Catala, R., & Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Reviews International, 20(4), 357–387. https://doi.org/10.1081/fri-200033462.

    Article  CAS  Google Scholar 

  • Lorenzo, G., Zaritzky, N., & Califano, A. (2018). Food gel emulsions: Structural characteristics and viscoelastic behavior. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 481–507). Cham: Springer. https://doi.org/10.1007/978-3-319-94625-2_18.

    Chapter  Google Scholar 

  • Lorevice, M. V., de Moura, M. R., Aouada, F. A., & Mattoso, S. L. H. C. (2012). Development of novel guava puree films containing chitosan nanoparticles. Journal of Nanoscience and Nanotechnology, 11, 1–7. https://doi.org/10.1166/jnn.2012.5716.

    Article  CAS  Google Scholar 

  • Majid, I., Thakur, M., & Nanda, V. (2018). Innovative and Safe Packaging Technologies for Food and Beverages: Updated Review. In Innovations in Technologies for Fermented Food and Beverage Industries (pp. 257–287). Springer, Cham.

    Google Scholar 

  • Mantilla, N., Castell-Perez, M. E., Gomes, C., & Moreira, R. G. (2013). Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT-Food Science and Technology, 51(1), 37–43. https://doi.org/10.1016/j.lwt.2012.10.010.

    Article  CAS  Google Scholar 

  • Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2013). Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science, 78(1), 98–104. https://doi.org/10.1111/j.1750-3841.2012.03006.x.

    Article  CAS  Google Scholar 

  • Martiñon, M. E., Moreira, R. G., Castell-Perez, M. E., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4 °C. LWT – Food Science and Technology, 56(2), 341–350. https://doi.org/10.1016/j.lwt.2013.11.043.

    Article  CAS  Google Scholar 

  • Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635–R666.

    CAS  Google Scholar 

  • Min, S., & Krochta, J. M. (2005). Antimicrobial films and coatings for fresh fruit and vegetables. In W. Jongen (Ed.), Improving the safety of fresh fruit and vegetables (pp. 455–492). New York: CRC Press. https://doi.org/10.1533/9781845690243.3.454.

    Chapter  Google Scholar 

  • Moreira, M. D. R., Roura, S. I., & Ponce, A. (2011). Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT-Food Science and Technology, 44(10), 2335–2341. https://doi.org/10.1016/j.lwt.2011.04.009.

    Article  CAS  Google Scholar 

  • Murmu, S. B., & Mishra, H. N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245, 820–828. https://doi.org/10.1016/j.foodchem.2017.11.104.

    Article  CAS  PubMed  Google Scholar 

  • Ncama, K., Magwaza, L., Mditshwa, A., & Tesfay, S. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packaging and Shelf Life, 16, 157–167. https://doi.org/10.1016/j.fpsl.2018.03.011.

    Article  Google Scholar 

  • No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. Journal of Food Science, 72(5), 1750–3841. https://doi.org/10.1111/j.1750-3841.2007.00383.x.

    Article  CAS  Google Scholar 

  • Olivas, G. I., & Barbosa-Cánovas, G. (2009). Edible films and coatings for fruits and vegetables. In K. Huber & M. Embuscado (Eds.), Edible films and coatings for food applications (pp. 211–244). New York: Springer. https://doi.org/10.1007/978-0-387-92824-1_7.

    Chapter  Google Scholar 

  • Olivas, G. I., Mattinson, D. S., & Barbosa-Canovas, G. V. (2007). Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biology and Technology, 45(1), 89–96. https://doi.org/10.1016/j.postharvbio.2006.11.018.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Rojas-Graü, M. A., González, L. A., Varela, P., Soliva-Fortuny, R., & Hernando, M. I. H. (2010). Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology, 57(3), 139–148. https://doi.org/10.1016/j.postharvbio.2010.04.001.

    Article  CAS  Google Scholar 

  • Paredes-Lopez, O., Camargo-Rubio, E., & Gallardo-Navarro, Y. (1974). Use of coatings of candelilla wax for the preservation of limes. Journal of the Science of Food and Agriculture, 25(10), 1207–1210. https://doi.org/10.1002/jsfa.2740251003.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. J. (2005). Edible coatings for fruit. In W. Jongen (Ed.), Fruit and vegetable processing. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Pereda, M., Marcovich, N., & Ansorena, M.R. (2017). Nanotechnology in food packaging applications: Barrier materials, antimicrobial agents, sensors and safety assessment. In: Dr. Leticia Myriam Torres Martínez, Dr. Oxana Vasilievna Kharissova, Dr. Boris Ildusovich Kharisov (Eds). Handbook of ecomaterials. Springer International Publishing. pp: 1–22. ISBN: 978–3–319–48281–1978–3–319–48281–1. https://doi.org/10.1007/978-3-319-48281-130-1.

  • Pilon, L., Spricigo, P. C., Miranda, M., de Moura, M. R., Assis, O. B. G., Mattoso, L. H. C., & Ferreira, M. D. (2014). Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. International Journal of Food Science and Technology, 50(2), 440–448. https://doi.org/10.1111/ijfs.12616.

    Article  CAS  Google Scholar 

  • Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biology and Technology, 49(2), 294–300. https://doi.org/10.1016/j.postharvbio.2008.02.013.

    Article  CAS  Google Scholar 

  • Ponce, A. G., Ayala-Zavala, J. F., Marcovich, N. E., Vázquez, F. J., & Ansorena, M. R. (2017). Nanotechnology trends in the food industry: Recent developments, risks and regulation. In A. M. Grumezescu & A. M. Holban (Eds.), Multi-volume SET (I-XX) Handbook of food bioengineering: Volume 12: Impact of nanoscience in the food industry. Chapter 5 (pp. 113–134). Elsevier Academic Press. ISBN: 978-0-12-811441-4.

    Google Scholar 

  • Prasad, K., Guarav, A., Preethi, P., & Neha, P. (2018). Edible coating technology for extending market life of horticultural produce. Acta Scientific Agriculture, 2, 55–64.

    Google Scholar 

  • Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks – A review. Cogent Food & Agriculture, 1, 1–11. https://doi.org/10.1080/23311932.2015.1121606.

    Article  Google Scholar 

  • Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Tapia, M. S. (2010). Edible coatings as carriers of food additives on fresh-cut fruit and vegetables. Stewart Postharvest Review, 6(3), 1–7. https://doi.org/10.2212/spr.2010.3.3.

    Article  Google Scholar 

  • Rojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118–127. https://doi.org/10.1016/j.foodhyd.2006.03.001.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2009a). Edible coatings to incorporate active ingredients to fresh-cut fruit: A review. Trends in Food Science & Technology, 20(10), 438–447. https://doi.org/10.1016/j.tifs.2009.05.002.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M., Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2009b). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: A review. International Journal of Food Science and Technology, 44(5), 875–889. https://doi.org/10.1111/j.1365-2621.2009.01911.x.

    Article  CAS  Google Scholar 

  • Saberi, B., & Golding, J. B. (2018). Postharvest application of biopolymer-based edible coatings to improve the quality of fresh horticultural produce. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 211–250). Cham: Springer. https://doi.org/10.1007/978-3-319-94625-2_9.

    Chapter  Google Scholar 

  • Salinas-Roca, B., Soliva-Fortuny, R., Welti-Chanes, J., & Martín-Belloso, O. (2016). Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control, 66, 190–197. https://doi.org/10.1016/j.foodcont.2016.02.005.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact onsafety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16. https://doi.org/10.1016/j.postharvbio.2015.03.009.

    Article  CAS  Google Scholar 

  • Sanchez-Gonzalez, L. (2016). Effect of hydroxypropyl methylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biology and Technology, 60(1), 57–63. https://doi.org/10.1016/j.postharvbio.2010.11.004.

    Article  CAS  Google Scholar 

  • Sessa, M., Ferraria, G., & Donsì, F. (2015). Novel edible coating containing essential oil nanoemulsions to prolong the shelf life of vegetable products. Chemical Engineering Transactions, 43, 55–60. https://doi.org/10.3303/cet1543010.

    Article  Google Scholar 

  • Severino, R., Vu, K. D., Donsì, F., Salmieri, S., Ferrari, G., & Lacroix, M. (2014). Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. International Journal of Food Microbiology, 191, 82–88. https://doi.org/10.1016/j.ijfoodmicro.2014.09.007.

    Article  CAS  PubMed  Google Scholar 

  • Severino, R., Ferrari, G., Vu, K. D., Donsì, F., & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella typhimurium on green beans. Food Control, 50, 215–222. https://doi.org/10.1016/j.foodcont.2014.08.029.

    Article  CAS  Google Scholar 

  • Shiekh, R. A., Malik, M. A., Al-Thabaiti, S. A., & Shiekh, M. A. (2013). Chitosan as a novel edible coating for fresh fruit. Food Science and Technology Research, 19(2), 139–155. https://doi.org/10.3136/fstr.19.139.

    Article  CAS  Google Scholar 

  • Sipahi, R. E., Castell-Perez, M. E., & Moreira, R. G. (2013). Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT-Food Science and Technology, 51(1), 9–15. https://doi.org/10.1016/j.lwt.2012.11.013.

    Article  CAS  Google Scholar 

  • Tesfay, S. Z., & Magwaza, L. S. (2017). Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packaging and Shelf Life, 11, 40–48. https://doi.org/10.1016/j.fpsl.2016.12.001.

    Article  Google Scholar 

  • Thompson, A. K. (2010). Controlled atmosphere storage of fruit and vegetables (2nd ed.). CABI Chapter 1.

    Book  Google Scholar 

  • Tiwari, A., Galanis, A., & Soucek, M. D. (2016). Biobased and environmentally benign coatings. Material degradation and failures series (pp. 87–120). Wiley.

    Google Scholar 

  • Tomadoni, B., Moreira, M. R., Pereda, M., & Ponce, A. G. (2018). Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT – Food Science and Technology, 97, 384–389. https://doi.org/10.1016/j.lwt.2018.07.029.

    Article  CAS  Google Scholar 

  • Ukai, Y. N., Tsutsumi, T., & Marakami, K. (1976). Preservation of agricultural products. U.S. patent 3,997, 674.

    Google Scholar 

  • Valencia-Chamorro, S. A., Palou, L., del Río, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705.

    Article  CAS  PubMed  Google Scholar 

  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496–511. https://doi.org/10.1080/10408390701537344.

    Article  CAS  PubMed  Google Scholar 

  • Viacava, G. E., Ayala-Zavala, J. F., Vázquez, J., & Ansorena, M. R. (2017). Sustainability challenges involved in use of nanotechnology in agro-food sector. In R. Bhat & V. Gómez-López (Eds.), Sustainability challenges in the agro-food sector (p. 675). Editorial Wiley-Blackwell.

    Google Scholar 

  • Wang, B., & Sain, M. (2007). Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Composites Science and Technology, 67(11), 2521–2527. https://doi.org/10.1016/j.compscitech.2006.12.015.

    Article  CAS  Google Scholar 

  • Warth, A. H. (1986). The chemistry and technology of waxes (Vol. 37). New York: Reinhold Publishing Corporation.

    Google Scholar 

  • Wen, P., Zhu, D. H., Feng, K., Liu, F. J., Lou, W. Y., Li, N., ... & Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food chemistry, 196, 996–1004.

    Google Scholar 

  • Weiss, J., Takhistov, P., & Mcclements, D. J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), 107–116. https://doi.org/10.1111/j.1750-3841.2006.00195.x.

    Article  CAS  Google Scholar 

  • Yousuf, B., & Srivastava, A. K. (2015). Psyllium (Plantago) gum as an effective edible coating to improve quality and shelf life of fresh-cut papaya (Carica papaya). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 9(7), 702–707.

    Google Scholar 

  • Yousuf, B., Magwazaa, L., & Srivastava, A. K. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT – Food Science and Technology, 16, 157–167. https://doi.org/10.1016/j.lwt.2017.10.051.

    Article  CAS  Google Scholar 

  • Zhong, Y., Whittington, C. F., Zhang, L., & Haynie, D. T. (2007). Controlled loading and release of a model drug from polypeptide multilayer nanofilms. Nanomedicine: Nanotechnology. Biology and Medicine, 3(2), 154–160. https://doi.org/10.1016/j.nano.2007.03.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Mar del Plata (UNMdP) for financial support.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra G. Ponce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansorena, M.R., Ponce, A.G. (2019). Coatings in the Postharvest. In: Gutiérrez, T. (eds) Polymers for Agri-Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-030-19416-1_17

Download citation

Publish with us

Policies and ethics