Skip to main content

Part of the book series: Pathways in Mathematics ((PATHMATH))

Abstract

In this chapter we describe main motivating factors for the investigation of symplectic difference systems in this book. This motivation comes from several sources, mainly from (i) a generalization of the theory of second-order Sturm-Liouville difference equations, (ii) discrete variational analysis, (iii) (classical and discrete) Hamiltonian mechanics, (iv) discrete analogy of the theory of linear Hamiltonian differential systems, and (v) numerical methods for Hamiltonian differential systems preserving the symplectic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Abramov, A modification of one method for solving nonlinear self-adjoint eigenvalue problems for Hamiltonian systems of ordinary differential equations, Comput. Math. Math. Phys. 51(1), 35–39 (2011)

    Article  MathSciNet  Google Scholar 

  2. R.P. Agarwal, Difference Equations and Inequalities. Theory, methods, and applications, 2nd edn. Monographs and Textbooks in Pure and Applied Mathematics, vol. 228 (Marcel Dekker, New York, 2000)

    Google Scholar 

  3. R.P. Agarwal, C.D. Ahlbrandt, M. Bohner, A. Peterson, Discrete linear Hamiltonian systems: A survey. Dynam. Syst. Appl. 8(3–4), 307–333 (1999)

    MathSciNet  MATH  Google Scholar 

  4. R.P. Agarwal, M. Bohner, S.R. Grace, D. O’Regan, Discrete Oscillation Theory (Hindawi Publishing, New York, NY, 2005)

    Book  MATH  Google Scholar 

  5. D. Aharonov, M. Bohner, U. Elias, Discrete Sturm comparison theorems on finite and infinite intervals. J. Differ. Equ. Appl. 18, 1763–1771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.D. Ahlbrandt, Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals. Rocky Mt. J. Math. 2, 169–182 (1972)

    Article  MATH  Google Scholar 

  7. C.D. Ahlbrandt, Linear independence of the principal solutions at and − for formally self-adjoint differential systems. J. Differ. Equ. 29(1), 15–27 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.D. Ahlbrandt, Equivalence of discrete Euler equations and discrete Hamiltonian systems. J. Math. Anal. Appl. 180, 498–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. C.D. Ahlbrandt, Geometric, analytic, and arithmetic aspects of symplectic continued fractions, in Analysis, Geometry and Groups: A Riemann Legacy Volume, Hadronic Press Collect. Orig. Artic. (Hadronic Press, Palm Harbor, FL, 1993), pp. 1–26

    Google Scholar 

  10. C.D. Ahlbrandt, C. Chicone, S.L. Clark, W.T. Patula, D. Steiger, Approximate first integrals for discrete Hamiltonian systems. Dynam. Contin. Discrete Impuls. Syst. 2, 237–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.D. Ahlbrandt, A.C. Peterson, Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Texts in the Mathematical Sciences, Vol. 16 (Kluwer Academic Publishers, Dordrecht, 1996)

    Chapter  Google Scholar 

  12. W.O. Amrein, A.M. Hinz, D.B. Pearson (eds.), Sturm–Liouville Theory. Past and Present. Including papers from the International Colloquium held at the University of Geneva (Geneva, 2003) (Birkhäuser Verlag, Basel, 2005)

    Google Scholar 

  13. D.R. Anderson, Discrete trigonometric matrix functions. PanAmer. Math. J. 7(1), 39–54 (1997)

    MathSciNet  MATH  Google Scholar 

  14. V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, Berlin, 1989)

    Book  Google Scholar 

  15. F.V. Atkinson, Discrete and Continuous Boundary Value Problems (Academic Press, New York, NY, 1964)

    MATH  Google Scholar 

  16. P.B. Bailey, W.N. Everitt, A. Zettl, The SLEIGN2 Sturm–Liouville Code. ACM Trans. Math. Software 21, 143–192 (2001)

    Article  MATH  Google Scholar 

  17. B. Bandyrskii, I. Gavrilyuk, I. Lazurchak, V. Makarov, Functional-discrete method (fd-method) for matrix Sturm–Liouville problems. Comput. Methods Appl. Math. 5, 362–386 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.H. Barrett, A Prüfer transformation for matrix differential systems. Proc. Am. Math. Soc. 8, 510–518 (1957)

    MATH  Google Scholar 

  19. A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications (Wiley, New York, 1974)

    MATH  Google Scholar 

  20. P. Benner, Symplectic balancing of Hamiltonian matrices. SIAM J. Sci. Comput. 22, 1885–1904 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory (Princeton University Press, Princeton, 2005)

    Google Scholar 

  22. M. Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199(3), 804–826 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Bohner, Discrete linear Hamiltonian eigenvalue problems. Comput. Math. Appl. 36(10–12), 179–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Bohner, O. Došlý, Disconjugacy and transformations for symplectic systems. Rocky Mt. J. Math. 27, 707–743 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Bohner, O. Došlý, Trigonometric transformations of symplectic difference systems. J. Differ. Equ. 163, 113–129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Bohner, O. Došlý, The discrete Prüfer transformation. Proc. Am. Math. Soc. 129, 2715–2726 (2001)

    Article  MATH  Google Scholar 

  27. M. Bohner, O. Došlý, Trigonometric systems in oscillation theory of difference equations, in Dynamic Systems and Applications, Proceedings of the Third International Conference on Dynamic Systems and Applications (Atlanta, GA, 1999), Vol. 3 (Dynamic, Atlanta, GA, 2001), pp. 99–104

    MATH  Google Scholar 

  28. M. Bohner, O. Došlý, W. Kratz, An oscillation theorem for discrete eigenvalue problems. Rocky Mt. J. Math. 33(4), 1233–1260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Bohner, O. Došlý, W. Kratz, Sturmian and spectral theory for discrete symplectic systems. Trans. Am. Math. Soc. 361, 3019–3123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Bohner, W. Kratz, R. Šimon Hilscher, Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter. Math. Nachr. 285(11–12), 1343–1356 (2012)

    MathSciNet  MATH  Google Scholar 

  31. V.G. Boltyanskii, Optimal Control of Discrete Systems (Wiley, New York, NY, 1978)

    Google Scholar 

  32. A. Bunse-Gerstner, Matrix factorizations for symplectic QR-like methods. Linear Algebra Appl. 83, 49–77 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations. Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009)

    Google Scholar 

  34. P.J. Channell, C. Scovel, Symplectic integration of Hamiltonian systems. Nonlinearity 3(2), 231–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Clark, P. Zemánek, On a Weyl–Titchmarsh theory for discrete symplectic systems on a half line. Appl. Math. Comput. 217(7), 2952–2976 (2010)

    MathSciNet  MATH  Google Scholar 

  36. W.A. Coppel, Disconjugacy. Lecture Notes in Mathematics, Vol. 220 (Springer, Berlin, 1971)

    Book  MATH  Google Scholar 

  37. F.M. Dopico, C.R. Johnson, Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra Appl. 419, 772–778 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. F.M. Dopico, C.R. Johnson, Parametrization of matrix symplectic group and applications. SIAM J. Matrix Anal. 419, 1–24 (2009)

    MATH  Google Scholar 

  39. Z. Došlá, D. Škrabáková, Phases of second order linear difference equations and symplectic systems. Math. Bohem. 128(3), 293–308 (2003)

    MathSciNet  MATH  Google Scholar 

  40. O. Došlý, On transformations of self-adjoint linear differential systems and their reciprocals. Ann. Polon. Math. 50, 223–234 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. O. Došlý, Principal solutions and transformations of linear Hamiltonian systems. Arch. Math. (Brno) 28, 113–120 (1992)

    MathSciNet  MATH  Google Scholar 

  42. O. Došlý, Oscillation criteria for self-adjoint linear differential equations. Math. Nachr. 166, 141–153 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. O. Došlý, Oscillation criteria for higher order Sturm–Liouville difference equations. J. Differ. Equ. Appl. 4(5), 425–450 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. O. Došlý, Oscillation theory of linear difference equations, in CDDE Proceedings (Brno, 2000). Arch. Math. (Brno) 36, 329–342 (2000)

    MathSciNet  Google Scholar 

  45. O. Došlý, Trigonometric transformation and oscillatory properties of second order difference equations, in Communications in Difference Equations (Poznan, 1998) (Gordon and Breach, Amsterdam, 2000), pp. 125–133

    Book  MATH  Google Scholar 

  46. O. Došlý, Symplectic difference systems: oscillation theory and hyperbolic Prüfer transformation. Abstr. Appl. Anal. 2004(4), 285–294 (2004)

    Article  MATH  Google Scholar 

  47. O. Došlý, Relative oscillation of linear Hamiltonian differential systems. Math. Nachr. 290(14–15), 2234–2246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. O. Došlý, On some aspects of the Bohl transformation for Hamiltonian and symplectic systems. J. Math. Anal. Appl. 448(1), 281–292 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. O. Došlý, J. Elyseeva, Singular comparison theorems for discrete symplectic systems. J. Differ. Equ. Appl. 20(8), 1268–1288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. O. Došlý, J. Elyseeva, An oscillation criterion for discrete trigonometric systems. J. Differ. Equ. Appl. 21(12), 1256–1276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. O. Došlý, R. Hilscher, Linear Hamiltonian difference systems: transformations, recessive solutions, generalized reciprocity. Dynam. Syst. Appl. 8(3–4), 401–420 (1999)

    MathSciNet  MATH  Google Scholar 

  52. O. Došlý, R. Hilscher, V. Zeidan, Nonnegativity of discrete quadratic functionals corresponding to symplectic difference systems. Linear Algebra Appl. 375, 21–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. O. Došlý, W. Kratz, Oscillation theorems for symplectic difference systems. J. Differ. Equ. Appl. 13, 585–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. O. Došlý, W. Kratz, Singular Sturmian theory for linear Hamiltonian differential systems. Appl. Math. Lett. 26, 1187–1191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. O. Došlý, Z. Pospíšil, Hyperbolic transformation and hyperbolic difference systems. Fasc. Math. 32, 26–48 (2001)

    MathSciNet  MATH  Google Scholar 

  56. S. Elaydi, An Introduction to Difference Equations, 3rd edn. Undergraduate Texts in Mathematics (Springer, New York, NY, 2005)

    Google Scholar 

  57. J.V. Elyseeva, A transformation for symplectic systems and the definition of a focal point. Comput. Math. Appl. 47, 123–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. J.V. Elyseeva, Symplectic factorizations and the definition of a focal point, in Proceedings of the Eighth International Conference on Difference Equations and Applications (Brno, 2003), ed. by S. Elaydi, G. Ladas, B. Aulbach, O. Došlý (Chapman & Hall/CRC, Boca Raton, FL, 2005), pp. 127–135

    Chapter  Google Scholar 

  59. J.V. Elyseeva, The comparative index for conjoined bases of symplectic difference systems, in Difference Equations, Special Functions, and Orthogonal Polynomials, Proceedings of the International Conference (Munich, 2005), ed. by S. Elaydi, J. Cushing, R. Lasser, A. Ruffing, V. Papageorgiou, W. Van Assche (World Scientific, London, 2007), pp. 168–177

    Chapter  Google Scholar 

  60. Yu.V. Eliseeva, Comparative index for solutions of symplectic difference systems. Differential Equations 45(3), 445–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. J.V. Elyseeva, Transformations and the number of focal points for conjoined bases of symplectic difference systems. J. Differ. Equ. Appl. 15(11–12), 1055–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yu.V. Eliseeva, Comparison theorems for symplectic systems of difference equations. Differential Equations 46(9), 1339–1352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yu.V. Eliseeva, Spectra of discrete symplectic eigenvalue problems with separated boundary conditions. Russ. Math. (Iz. VUZ) 55(11), 71–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. J.V. Elyseeva, Comparative Index in Mathematical Modelling of Oscillations of Discrete Symplectic Systems, (in Russian) (Moscow State University of Technology “Stankin”, Moscow, 2011)

    Google Scholar 

  65. Yu.V. Eliseeva, An approach for computing eigenvalues of discrete symplectic boundary-value problems. Russ. Math. (Iz. VUZ) 56(7), 47–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. J.V. Elyseeva, A note on relative oscillation theory for symplectic difference systems with general boundary conditions. Appl. Math. Lett. 25(11), 1809–1814 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. J.V. Elyseeva, Generalized oscillation theorems for symplectic difference systems with nonlinear dependence on spectral parameter. Appl. Math. Comput. 251, 92–107 (2015)

    MathSciNet  MATH  Google Scholar 

  68. J.V. Elyseeva, Generalized reciprocity principle for discrete symplectic systems. Electron. J. Qual. Theory Differ. Equ. 2015(95), 12 pp. (2015) (electronic)

    Google Scholar 

  69. J.V. Elyseeva, Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index. J. Math. Anal. Appl. 444(2), 1260–1273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.V. Elyseeva, On symplectic transformations of linear Hamiltonian differential systems without normality. Appl. Math. Lett. 68, 33–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  71. J.V. Elyseeva, The comparative index and transformations of linear Hamiltonian differential systems. Appl. Math. Comput. 330, 185–200 (2018)

    MathSciNet  MATH  Google Scholar 

  72. L. Erbe, P. Yan, Disconjugacy for linear Hamiltonian difference systems. J. Math. Anal. Appl. 167, 355–367 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  73. L. Erbe, P. Yan, On the discrete Riccati equation and its application to discrete Hamiltonian systems. Rocky Mt. J. Math. 25, 167–178 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  74. R. Fabbri, R. Johnson, S. Novo, C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems. J. Math. Anal. Appl. 380(2), 853–864 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. H. Fassbender, Symplectic Methods for the Symplectic Eigenproblem (Kluwer, New York. NY, 2000)

    MATH  Google Scholar 

  76. K. Feng, The Hamiltonian way for computing Hamiltonian dynamics, in Applied and Industrial Mathematics (Venice, 1989). Math. Appl., Vol. 56 (Kluwer, Dordrecht, 1991), pp. 17–35

    Google Scholar 

  77. K. Feng, M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems. Translated and revised from the Chinese original. With a foreword by Feng Duan, Zhejiang Science and Technology Publishing House, Hangzhou, Springer, Heidelberg, 2010

    Book  MATH  Google Scholar 

  78. K. Feng, D. Wang, A note on conservation laws of symplectic difference schemes for Hamiltonian systems. J. Comput. Math. 9(3), 229–237 (1991)

    MathSciNet  MATH  Google Scholar 

  79. K. Feng, H. Wu, M. Qin, Symplectic difference schemes for linear Hamiltonian canonical systems. J. Comput. Math. 8(4), 371–380 (1990)

    MathSciNet  MATH  Google Scholar 

  80. S. Flach, A.V. Gorbach, Discrete breathers – advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  MATH  Google Scholar 

  81. T.E. Fortmann, A matrix inversion identity. IEEE Trans. Automat. Control 15, 599–599 (1970)

    Article  MathSciNet  Google Scholar 

  82. F.R. Gantmacher, Lectures in Analytical Mechanics (MIR Publischers, Moscow, 1975)

    Google Scholar 

  83. F.R. Gantmacher, Theory of Matrices (AMS Chelsea Publishing, Providence, RI, 1998)

    MATH  Google Scholar 

  84. G.H. Golub, C.F. Van Loan, Matrix Computations. John Hopkins Series in Mathematical Sciences, 2nd edn. (John Hopkins University Press, Baltimore, MD, 1989)

    Google Scholar 

  85. D. Greenspan, Discrete Models (Addison-Wesley, London, 1973)

    MATH  Google Scholar 

  86. E. Hairer, S.P. Norsett, G. Wanner, Ordinary Differential Equations I: Nonstiff Problems (Springer, New York, NY, 2008)

    MATH  Google Scholar 

  87. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer, New York, NY, 2010)

    MATH  Google Scholar 

  88. P. Hartman, Ordinary Differential Equations (Wiley, New York, NY, 1964)

    MATH  Google Scholar 

  89. P. Hartman, Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Am. Math. Soc. 246, 1–30 (1978)

    MathSciNet  MATH  Google Scholar 

  90. R.E. Hartwig, A note on the partial ordering of positive semi-definite matrices. Linear Multilinear Algebra 6(3), 223–226 (1978/79)

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Hilscher, V. Růžičková, Implicit Riccati equations and discrete symplectic systems. Int. J. Differ. Equ. 1, 135–154 (2006)

    MathSciNet  MATH  Google Scholar 

  92. R. Hilscher, V. Růžičková, Riccati inequality and other results for discrete symplectic systems. J. Math. Anal. Appl. 322(2), 1083–1098 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  93. R. Hilscher, V. Zeidan, Discrete optimal control: the accessory problem and necessary optimality conditions. J. Math. Anal. Appl. 243(2), 429–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  94. R. Hilscher, V. Zeidan, Second order sufficiency criteria for a discrete optimal control problem. J. Differ. Equ. Appl. 8(6), 573–602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Hilscher, V. Zeidan, Discrete optimal control: second order optimality conditions. J. Differ. Equ. Appl. 8(10), 875–896 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  96. R. Hilscher, V. Zeidan, Coupled intervals in the discrete calculus of variations: necessity and sufficiency. J. Math. Anal. Appl. 276(1), 396–421 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. R. Hilscher, V. Zeidan, Symplectic difference systems: variable stepsize discretization and discrete quadratic functionals. Linear Algebra Appl. 367, 67–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  98. R. Hilscher, V. Zeidan, Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions. Comput. Math. Appl. 45(6–9), 1369–1383 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  99. R. Hilscher, V. Zeidan, Coupled intervals in the discrete optimal control. J. Differ. Equ. Appl. 10(2), 151–186 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  100. R. Hilscher, V. Zeidan, Nonnegativity and positivity of a quadratic functional in the discrete calculus of variations: A survey. J. Differ. Equ. Appl. 11(9), 857–875 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. R. Hilscher, V. Zeidan, Coupled intervals for discrete symplectic systems. Linear Algebra Appl. 419(2–3), 750–764 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  102. R. Hilscher, V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal. 70(9), 3209–3226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  103. J. Ji, B. Yang, Eigenvalue comparison for boundary value problems for second order difference equations. J. Math. Anal. Appl. 320(2), 964–972 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  104. R. Johnson, S. Novo, C. Núñez, R. Obaya, Uniform weak disconjugacy and principal solutions for linear Hamiltonian systems, in Recent Advances in Delay Differential and Difference Equations (Balatonfuered, Hungary, 2013). Springer Proceedings in Mathematics & Statistics, Vol. 94 (Springer, Berlin, 2014), pp. 131–159

    Google Scholar 

  105. R. Johnson, S. Novo, C. Núñez, R. Obaya, Nonautonomous linear-quadratic dissipative control processes without uniform null controllability. J. Dynam. Differ. Equ. 29(2), 355–383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  106. R. Johnson, R. Obaya, S. Novo, C. Núñez, R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Developments in Mathematics, Vol. 36 (Springer, Cham, 2016)

    Google Scholar 

  107. W.G. Kelley, A. Peterson, Difference Equations: An Introduction with Applications (Academic Press, San Diego, CA, 1991)

    MATH  Google Scholar 

  108. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory. Mathematical Topics, Vol. 6 (Akademie Verlag, Berlin, 1995)

    Google Scholar 

  109. W. Kratz, Banded matrices and difference equations. Linear Algebra Appl. 337(1–3), 1–20 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  110. W. Kratz, Definitnes of quadratic functionals. Analysis (Munich) 23, 163–183 (2003)

    MathSciNet  MATH  Google Scholar 

  111. W. Kratz, Discrete oscillation. J. Differ. Equ. Appl. 9, 127–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  112. W. Kratz, R. Šimon Hilscher, Rayleigh principle for linear Hamiltonian systems without controllability. ESAIM Control Optim. Calc. Var. 18(2), 501–519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  113. W. Kratz, R. Šimon Hilscher, A generalized index theorem for monotone matrix-valued functions with applications to discrete oscillation theory. SIAM J. Matrix Anal. Appl. 34(1), 228–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  114. G. Ladas, E.A. Grove, M.R.S. Kulenovic, Progress report on rational difference equations. J. Differ. Equ. Appl. 10, 1313–1327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  115. A.J. Laub, Matrix Analysis for Scientists and Engineers (SIAM, Philadelphia, PA, 2005)

    Book  MATH  Google Scholar 

  116. P.D. Lax, Linear Algebra, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication (Wiley, New York, 1997)

    Google Scholar 

  117. W.W. Lin, V. Mehrmann, H. Xu, Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 302–303, 469–533 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  118. X.-S. Liu, Y.-Y. Qi, J.-F. He, P.-Z. Ding, Recent progress in symplectic algorithms for use in quantum systems. Commun. Comput. Phys. 2(1), 1–53 (2007)

    MathSciNet  Google Scholar 

  119. V. Loan, A Symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl. 61, 233–251 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  120. D.G. Luenberger, Linear and Nonlinear Programming, 2nd edn. (Addison-Wesley, Reading, MA, 1984)

    MATH  Google Scholar 

  121. D.S. Mackey, N. Mackey, F. Tisseur, Structured tools for structured matrices. Electron. J. Linear Algebra 10, 106–145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  122. B. Marinković, Optimality conditions in discrete optimal control problems with state constraints. Numer. Funct. Anal. Optim. 28(7–8), 945–955 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  123. B. Marinković, Second order optimality conditions in a discrete optimal control problem. Optimization 57(4), 539–548 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  124. J. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  125. V. Mehrmann, A symplectic orthogonal method for single input or single output discrete time optimal quadratic control problems. SIAM J. Matrix Anal. Appl. 9, 221–247 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  126. M. Morse, Variational Analysis: Critical Extremals and Sturmian Extensions (Willey, New York, NY, 1973)

    Google Scholar 

  127. C. Paige, C. Van Loan, A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41, 11–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  128. C.H. Rasmussen, Oscillation and asymptotic behaviour of systems of ordinary linear differential equations. Trans. Am. Math. Soc. 256, 1–49 (1979)

    Article  MATH  Google Scholar 

  129. W.T. Reid, A Prüfer transformation for differential systems. Pacific J. Math. 8, 575–584 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  130. W.T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems. Pacific J. Math. 13, 665–685 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  131. W.T. Reid, Generalized polar coordinate transformations for differential systems. Rocky Mountain J. Math. 1(2), 383–406 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  132. W.T. Reid, Ordinary Differential Equations (Wiley, New York, NY, 1971)

    MATH  Google Scholar 

  133. W.T. Reid, Riccati Differential Equations (Academic Press, New York, NY, 1972)

    MATH  Google Scholar 

  134. W.T. Reid, Sturmian Theory for Ordinary Differential Equations (Springer, New York, NY, 1980)

    Book  MATH  Google Scholar 

  135. F.S. Rofe-Beketov, A.M. Kholkin, Spectral Analysis of Differential Operators. World Scientific Monograph Series in Mathematics, Vol. 7 (World Scientific, Hackensack, NJ, 2005)

    Google Scholar 

  136. R.D. Ruth, A canonical integration technique. IEEE Trans. Nuclear Sci. 30, 2669–2671 (1983)

    Article  Google Scholar 

  137. P. Řehák, Oscillatory properties of second order half-linear difference equations. Czechoslovak Math. J. 51(126)(2), 303–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  138. Y. Shi, Symplectic structure of discrete Hamiltonian systems. J. Math. Anal. Appl. 266(2), 472–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  139. J.C.F. Sturm, Memoire sur une classe d’équations differénces partielles. J. Math. Pures Appl. 1, 373–444 (1836)

    Google Scholar 

  140. P. Šepitka, Riccati equations for linear Hamiltonian systems without controllability condition. Discrete Contin. Dyn. Syst. 39(4), 1685–1730 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  141. P. Šepitka, R. Šimon Hilscher, Minimal principal solution at infinity of nonoscillatory linear Hamiltonian systems. J. Dynam. Differ. Equ. 26(1), 57–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  142. P. Šepitka, R. Šimon Hilscher, Recessive solutions for nonoscillatory discrete symplectic systems. Linear Algebra Appl. 469, 243–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  143. P. Šepitka, R. Šimon Hilscher, Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems. J. Dynam. Differ. Equ. 27(1), 137–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  144. P. Šepitka, R. Šimon Hilscher, Comparative index and Sturmian theory for linear Hamiltonian systems. J. Differ. Equ. 262(2), 914–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  145. P. Šepitka, R. Šimon Hilscher, Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems. J. Differ. Equ. Appl. 23(4), 657–698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  146. P. Šepitka, R. Šimon Hilscher, Focal points and principal solutions of linear Hamiltonian systems revisited. J. Differ. Equ. 264(9), 5541–5576 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  147. P. Šepitka, R. Šimon Hilscher, Singular Sturmian separation theorems for nonoscillatory symplectic difference systems. J. Differ. Equ. Appl. 24(12), 1894–1934 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  148. P. Šepitka, R. Šimon Hilscher, Singular Sturmian separation theorems on unbounded intervals for linear Hamiltonian systems. J. Differ. Equ. 266(11), 7481–7524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  149. R. Šimon Hilscher, A note on the time scale calculus of variations problems, in Ulmer Seminare über Funktionalanalysis und Differentialgleichungen, Vol. 14 (University of Ulm, Ulm, 2009), pp. 223–230

    Google Scholar 

  150. R. Šimon Hilscher, Sturmian theory for linear Hamiltonian systems without controllability. Math. Nachr. 284(7), 831–843 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  151. R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in: Dynamical Systems, Differential Equations and Applications, Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund, J. Voigt (eds.), Discrete Contin. Dynam. Systems, Suppl. 2011 (American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2011), pp. 684–691

    Google Scholar 

  152. R. Šimon Hilscher, Oscillation theorems for discrete symplectic systems with nonlinear dependence in spectral parameter. Linear Algebra Appl. 437(12), 2922–2960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  153. R. Šimon Hilscher, Spectral and oscillation theory for general second order Sturm–Liouville difference equations. Adv. Differ. Equ. 2012(82), 19 pp. (2012)

    Google Scholar 

  154. R. Šimon Hilscher, V. Zeidan, Symplectic structure of Jacobi systems on time scales. Int. J. Differ. Equ. 5(1), 55–81 (2010)

    MathSciNet  Google Scholar 

  155. R. Šimon Hilscher, V. Zeidan, Symmetric three-term recurrence equations and their symplectic structure. Adv. Differ. Equ. 2010(Article ID 626942), 17 pp. (2010)

    Google Scholar 

  156. R. Šimon Hilscher, P. Zemánek, Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints. Adv. Differ. Equ. 2013(232), 18 pp. (2013)

    Google Scholar 

  157. R. Šimon Hilscher, P. Zemánek, Limit circle invariance for two differential systems on time scales. Math. Nachr. 288(5–6), 696–709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  158. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices (AMS Mathematical Surveys and Monographs, Providence, RI, 1999)

    Chapter  Google Scholar 

  159. M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems. Int. J. Differ. Equ. 2, 221–244 (2007)

    MathSciNet  Google Scholar 

  160. V.A. Yakubovich, Arguments on the group of symplectic matrices. Mat. Sb. 55, 255–280 (1961)

    MathSciNet  Google Scholar 

  161. V.A. Yakubovich, Oscillatory properties of solutions of canonical equations. Mat. Sb. 56, 3–42 (1962)

    MathSciNet  Google Scholar 

  162. V.A. Yakubovich, V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients, 2 volumes (Wiley, New York, 1975)

    Google Scholar 

  163. V. Zeidan, Continuous versus discrete nonlinear optimal control problems, in Proceedings of the 14th International Conference on Difference Equations and Applications (Istanbul, 2008), ed. by M. Bohner, Z. Došlá, G. Ladas, M. Ünal, A. Zafer (Uğur-Bahçeşehir University Publishing Company, Istanbul, 2009), pp. 73–93

    Google Scholar 

  164. V. Zeidan, Constrained linear-quadratic control problems on time scales and weak normality. Dynam. Syst. Appl. 26(3–4), 627–662 (2017)

    MATH  Google Scholar 

  165. M.I. Zelikin, Control Theory and Optimization. I. Homogeneous Spaces and the Riccati Equation in the Calculus of Variations. Encyclopaedia of Mathematical Sciences, Vol. 86 (Springer, Berlin, 2000)

    Google Scholar 

  166. A. Zettl, Sturm–Liouville Theory (AMS Mathematical Surveys and Monographs, Providence, RI, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Došlý, O., Elyseeva, J., Hilscher, R.Š. (2019). Motivation and Preliminaries. In: Symplectic Difference Systems: Oscillation and Spectral Theory. Pathways in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-19373-7_1

Download citation

Publish with us

Policies and ethics