Skip to main content

How to Build a 3D Model of a Fossil Hominin Vertebral Spine Based on Osseous Material

  • Chapter
  • First Online:
Spinal Evolution

Abstract

Reconstruction of the spinal curvatures of extinct hominins is essential in order to understand their posture and function. Despite its importance, researchers face many difficulties in reconstructing spinal posture based solely on osseous material due to the absence of soft tissues.

In this chapter, we explain how to align two consecutive vertebrae in the absence of the intervertebral discs. Then we summarize and demonstrate the use of the current methods for estimating sacral orientation and spinal curvatures from osseous material. We also discuss the advantages and disadvantages of each method. As an example, we demonstrate the application of these methods to the vertebral column of the Kebara 2 adult male Neandertal and present the 3D reconstruction of its spinal curvatures from the sacrum to the cervical spine.

Two methods—pelvic incidence (PI) and sacral anatomical angle (SAA)—are used to describe sacral orientation. Both methods are applicable when the pelvis is relatively complete. Three methods—lumbar vertebral body wedging (LVBW), inferior articular process angle (IAPA), and lumbar lordosis based on PI (LLPI)—are used to define lumbar lordosis. Two methods—thoracic vertebral body wedging (TVBW) and thoracic vertebral body height difference (TVBHD)—are used to estimate thoracic kyphosis. Finally, foramen magnum orientation (FMO) is used to reconstruct the cervical lordosis.

The calculated values for Kebara 2 are PI: 34°, SAA: 19°, IAPA: 25°, LLPI: 29°–36°, TVBHD: 44°, TVBW: 37°, FMO: 26°. Based on these calculations, we present here a complete reconstruction of the spine of Kebara 2 from the atlas to the sacrum. This is the first reconstruction of a complete vertebral spine that has been performed for a fossil hominin. Given anatomical variation, utilizing a combination of the methods is advised. The different methods are consistent with each other in each anatomical region and their combined use provides a more robust estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arensburg B (1991) The vertebral column, thoracic cage and hyoid bone. In: Bar-Yosef O, Vandermeersch B (eds) Le squelette moustérien de Kébara 2. Éditions du CNRS, Paris, pp 113–147

    Google Scholar 

  • Bailey J, Been E, Kramer P (2014) Higher lumbar lordosis among women: a study examining lumbar angle and dorsoventral wedging of vertebral bodies and discs in standing and supine radiographs. FASEB J 28:1

    Article  CAS  Google Scholar 

  • Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16(9):1459–1467

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastir M, García-Martínez D, Torres-Tamayo N, Sanchis-Gimeno JA, O’Higgins P, Utrilla C, Torres Sánchez I, García Río F (2017) In vivo 3D analysis of thoracic kinematics: changes in size and shape during breathing and their implications for respiratory function in recent humans and fossil hominins. Anat Rec 300(2):255–264

    Article  Google Scholar 

  • Bastir M, Torres-Tamayo N, Palancar CA, Zlolniski SL, García-Martínez D, Riesco-López A, Vidal D, Blanco-Pérez E, Barash A, Nalla S, Martelli S, Sanchis-Gimeno JA, Schlager S (2019) Geometric morphometric studies in the human spine. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 360–386

    Google Scholar 

  • Been E, Bailey JF (2019) The association between spinal posture and spinal biomechanics in modern humans: implications for extinct hominins. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 283–300

    Google Scholar 

  • Been E, Barash A, Marom A, Kramer PA (2010a) Vertebral bodies or discs: which contributes more to human-like lumbar lordosis? Clin Orthop Relat Res 468(7):1822–1829

    Article  Google Scholar 

  • Been E, Barash A, Pessah H, Peleg S (2010b) A new look at the geometry of the lumbar spine. Spine 35(20):E1014–E1017

    Article  PubMed  Google Scholar 

  • Been E, Gó mez-Olivencia A, Kramer PA (2012) Lumbar lordosis of extinct hominins. Am J Phys Anthropol 147(1):64–77

    Article  PubMed  Google Scholar 

  • Been E, Gómez-Olivencia A, Kramer PA (2014a) Brief communication: lumbar lordosis in extinct hominins: implications of the pelvic incidence. Am J Phys Anthropol 154(2):307–314

    Article  PubMed  Google Scholar 

  • Been E, Shefi S, Soudack M, Zilka LR, Barash A, Rak Y (2014b) Cervical lordosis and the orientation of the foramen magnum, implications to human evolution. Am J Phys Anthropol 153:75

    Google Scholar 

  • Been E, Gómez-Olivencia A, Kramer P, Barash A (2017a) 3D reconstruction of spinal posture of the Kebara 2 Neanderthal. In: Marom A, Hovers E (eds) Human paleontology and prehistory contributions in honor of Yoel Rak. Springer, Cham, pp 239–251

    Google Scholar 

  • Been E, Gómez-Olivencia A, Shefi S, Soudack M, Bastir M, Barash A (2017b) Evolution of spinopelvic alignment in hominins. Anat Rec 300(5):900–911

    Article  PubMed  Google Scholar 

  • Been E, Shefi S, Soudack M (2017c) Cervical lordosis: the effect of age and gender. Spine J 17(6):880–888

    Article  PubMed  Google Scholar 

  • Been E, Kalichman L (2014) Lumbar lordosis. Spine J 14(1):87–97

    Article  PubMed  Google Scholar 

  • Been E, Pessah H, Been L, Tawil A, Peleg S (2007) New method for predicting the lumbar lordosis angle in skeletal material. Anat Rec (Hoboken) 290(12):1568–1573

    Article  Google Scholar 

  • Been E, Pessah H, Peleg S, Kramer PA (2013) Sacral orientation in hominin evolution. Adv Anthropol 03(03):133–141

    Article  Google Scholar 

  • Been E, Simonovich A, Kalichman L (2019) Spinal posture and pathology in modern humans. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 301–320

    Google Scholar 

  • Bonmatí A, Gómez-Olivencia A, Arsuaga JL, Carretero JM, Gracia A, Martínez I, Lorenzo C, Bermúdez de Castro JM, Carbonell E (2010) Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc Natl Acad Sci U S A 107(43):18386–18391

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, Prat-Pradal D, Legaye J, Duval-Beaupère G, Pelissier J (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Carretero JM, Rodríguez L, Garcia-Gonzalez R, Arsuaga JL, Gómez-Olivencia A, Lorenzo C, Bonmatí A, Gracia A, Martínez I, Quam R (2012) Stature estimation from complete long bones in the middle Pleistocene humans from the Sima de los Huesos, sierra de Atapuerca (Spain). J Hum Evol 62(2):242–255

    Article  PubMed  Google Scholar 

  • Castillo ER, Lieberman DE (2017) Lordosis variability and shock attenuation in the hominin lumbar spine. Am J Phys Anthropol 162:139–140

    Google Scholar 

  • Chevillotte T, Coudert P, Cawley D, Bouloussa H, Mazas S, Boissière L, Gille O (2018) Influence of posture on relationships between pelvic parameters and lumbar lordosis: comparison of the standing, seated, and supine positions. A preliminary study. Orthop Traumatol Surg Res 104(5):565–568

    Article  PubMed  Google Scholar 

  • Cleuvenot E (1999) Courbures sagittales de la colonne vertébrale déterminées par la morphologie des vertèbres. Développement d’une nouvelle méthodologie et application chez Homo sapiens. PhD thesis. Université Bordeaux I

    Google Scholar 

  • Damasceno LHF, Catarin SRG, Campos AD, Defino HLA (2006) Lumbar lordosis: a study of angle values and of vertebral bodies and intervertebral discs role. Acta Ortopédica Brasileira 14(4):193–198

    Article  Google Scholar 

  • Duval-Beaupère G, Schmidt C, Cosson PH (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462

    Article  PubMed  Google Scholar 

  • Goh S, Price RI, Leedman PJ, Singer KP (1999) The relative influence of vertebral body and intervertebral disc shape on thoracic kyphosis. Clin Biomech (Bristol, Avon) 14(7):439–448

    Article  CAS  Google Scholar 

  • Gómez-Olivencia A, Arlegi M, Barash A, Stock JT, Been E (2017) The Neandertal vertebral column 2: the lumbar spine. J Hum Evol 106:84–101

    Article  PubMed  Google Scholar 

  • Gómez-Olivencia A, Barash A, García-Martínez D, Arlegi M, Kramer P, Bastir M, Been E (2018) 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nat Commun 9(1):4387

    Google Scholar 

  • Gómez-Olivencia A, Eaves-Johnson KL, Franciscus RG, Carretero JM, Arsuaga JL (2009) Kebara 2: new insights regarding the most complete Neandertal thorax. J Hum Evol 57(1):75–90

    Article  PubMed  Google Scholar 

  • Haeusler M, Martelli SA, Boeni T (2002) Vertebrae numbers of the early hominid lumbar spine. J Hum Evol 43(5):621–643

    Article  PubMed  Google Scholar 

  • Hardacker JW, Shuford RF, Capicotto PN, Pryor PW (1997) Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine (Philadelphia PA 1976) 22(13):1472–1480

    Article  CAS  Google Scholar 

  • Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine 26(23):2596–2600

    Article  CAS  PubMed  Google Scholar 

  • Korovessis PG, Stamatakis MV, Baikousis AG (1998) Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine 23(6):700–704

    Article  CAS  PubMed  Google Scholar 

  • Kunkel ME, Herkommer A, Reinehr M, Bockers TM, Wilke HJ (2011) Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine. J Anat 219(3):375–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 25(11):3630–3637

    Article  PubMed  Google Scholar 

  • Legaye J, Duval-Beaupère G (2008) Gravitational forces and sagittal shape of the spine. Int Orthop 32(6):809–816

    Article  CAS  PubMed  Google Scholar 

  • Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legaye J, Duval-Beaupère G, Tardieu C, Hecquet J (2007) The conditions required for an economic standing position in humans: key role of the pelvic parameter: the sacral incidence angle. Growth, evolution and plasticity of this parameter. J Morphol 268(12):1099–1099

    Google Scholar 

  • Mac-Thiong JM, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine 35(22):E1193–E1198

    Article  PubMed  Google Scholar 

  • Peleg S, Dar G, Steinberg N, Peled N, Hershkovitz I, Masharawi Y (2007) Sacral orientation revisited. Spine 32(15):E397–E404

    Article  PubMed  Google Scholar 

  • Pilbeam D (2004) The anthropoid postcranial axial skeleton: comments on development, variation, and evolution. J Exp Zool B Mol Dev Evol 302b(3):241–267

    Article  Google Scholar 

  • Sanders WJ (1998) Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol 34(3):249–302

    Article  CAS  PubMed  Google Scholar 

  • Sawyer GJ, Maley B (2005) Neanderthal reconstructed. Anat Rec 283(1):23–31

    Article  CAS  Google Scholar 

  • Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers – age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31(25):E959–E967

    Article  PubMed  Google Scholar 

  • Simon P, Orias AAE, Andersson GBJ, An HS, Inoue N (2012) In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine 37(12):1058–1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinkaus E (1985) Pathology and the posture of the La-Chapelle-aux-saints Neandertal. Am J Phys Anthropol 67(1):19–41

    Article  CAS  PubMed  Google Scholar 

  • Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267

    Article  PubMed  Google Scholar 

  • Williams SA, Gómez-Olivencia A, Pilbeam DR (2019) Numbers of vertebrae in hominoid evolution. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 97–124

    Google Scholar 

  • Williams SA, Middleton ER, Villamil CI, Shattuck MR (2016) Vertebral numbers and human evolution. Am J Phys Anthropol 159(Suppl 61):S19–S36

    Article  PubMed  Google Scholar 

  • Williams SA, Ostrofsky KR, Frater N, Churchill SE, Schmid P, Berger LR (2013) The vertebral column of Australopithecus sediba. Science 340(6129):1232996

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Kong Q, Song Y, Liu L, Zeng J, Xing R (2013) The characteristics of spinopelvic sagittal alignment in patients with lumbar disc degenerative diseases. Eur Spine J 23(3):569–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhang K, Tian HJ, Wu AM, Cheng XF, Zhou TJ, Zhao J (2018) Correlation between lumbar intervertebral disc height and lumbar spine sagittal alignment among asymptomatic Asian young adults. J Orthop Surg Res 13(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Haeusler and M. Bastir for their useful comments in a previous version of this paper. AGO receives support from the Spanish Ministerio de Ciencia y Tecnología (Project: CGL-2015-65387-C3-2-P, MINECO/FEDER), by the Spanish Ministerio deCiencia, Innovación y Universidades (project PGC2018-093925-BC33) and from the Research Group IT1418-19 from the Eusko Jaurlaritza-Gobierno Vasco.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Been, E. et al. (2019). How to Build a 3D Model of a Fossil Hominin Vertebral Spine Based on Osseous Material. In: Been, E., Gómez-Olivencia, A., Ann Kramer, P. (eds) Spinal Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-19349-2_15

Download citation

Publish with us

Policies and ethics