Skip to main content

The Movement of Water in the Systems

  • Chapter
  • First Online:
Soil, Plant and Atmosphere

Abstract

The movement of water is explained in detail through Darcy-Buckingham’s law. For this, the concepts of flow, gradient, and conductivity are explained and illustrated with practical examples. Special emphasis is given to the hydraulic conductivity, explaining the most common forms of its presentation. The saturated and the unsaturated flows of water are presented in light of the continuity equation, also with several examples of practical importance and some of the determination of the hydraulic conductivity. An introduction is given to the solution of differential equations, mainly of boundary value problems (BVPs). A new concept of matrix flow is introduced, and a short view is given on the movement of water in open channels and pipelines, based on Bernoulli’s law of fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration – guidelines for computing crop water requirements. FAO, Roma

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University, Fort Collins, CO

    Google Scholar 

  • Bruce RR, Klute A (1956) The measurement of soil moisture diffusivity. Soil Sci Soc Am Proc 20:458–462

    Article  Google Scholar 

  • Buckingham E (1907) Studies of movement of soil moisture. United States Department of Agriculture Bureau, Washington, DC

    Google Scholar 

  • Burdine NT (1953) Relative permeability calculation from size distribution data. Trans AIME 198:71–78

    Google Scholar 

  • Carnaham B, Luther HA, Wilkes JO (1969) Applied numerical methods. John Wiley & Sons, New York, NY

    Google Scholar 

  • Churchill RV (1963) Fourier series and boundary value problems. McGraw Hill, New York, NY

    Google Scholar 

  • Darcy H (1856) Les fontaines publique de la Ville de Dijon. Victor Dalmont, Paris

    Google Scholar 

  • De Jong van Lier Q, Dourado-Neto D, Metselaar K (2009) Modeling of transpiration reduction in van Genuchten–Mualem type soils. Water Resour Res 45:1–9

    Article  Google Scholar 

  • Dourado-Neto D, De Jong van Lier Q, van Genuchten MT, Reichardt K, Metselaar K, Nielsen DR (2011) Alternative analytical expressions for the general van Genuchten-Mualem and van Genuchten-Burdine hydraulic conductivity models. Vadose Zone J 10:618–623

    Article  Google Scholar 

  • Gardner WR (1956) Calculation of capillary conductivity from pressure plate outflow data. Soil Sci Soc Am Proc 20:317–320

    Article  Google Scholar 

  • Gardner WR (1970) Field measurement of soil water diffusivity. Soil Sci Soc Am Proc 34:215–238

    Google Scholar 

  • Hillel D, Krentos VD, Stylianou Y (1972) Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ. Soil Sci 114:395–400

    Article  Google Scholar 

  • Hubert MK (1956) Darcy’s law and field equations of the flow of underground fluids. Am Inst Min, Metal Petr Eng Trans 207:222–239

    Google Scholar 

  • Johnson HP, Frevert KR, Evans F (1952) Simplified procedure for the measurement and computation of soil permeability below the water table. Agri Eng 33:283–289

    Google Scholar 

  • Klute A (1986) Methods of soil analysis. Part I: Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Libardi PL, Reichardt K, Nielsen DR, Biggar JW (1980) Simplified field methods for estimating the unsaturated hydraulic conductivity. Soil Sci Soc Am J 44:3–6

    Article  Google Scholar 

  • Luthin JN (1957) Drainage of agricultural lands. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Miller EE, Low PF (1963) Threshold gradient for water flow in clay systems. Soil Sci Soc Am Proc 27:605–609

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Nobel PS (1983) Biophysical, plant physiology and ecology. W.H. Freeman & Company, New York, NY

    Google Scholar 

  • Prevedello CL, Armindo RA (2015) Fisica do solo com problemas resolvidos, 2nd edn. Prevedello CL, Curitiba

    Google Scholar 

  • Prevedello CL, Reichardt K (1991) Modelo tridimensional para medida da condutividade hidráulica de solos não saturados. Rev Bras Ciênc Solo 15:121–124

    Google Scholar 

  • Raats PAC (1970) Steady infiltration from line sources and furrows. Soil Sci Soc Am Proc 34:709–714

    Article  Google Scholar 

  • Reichardt K, Godoy CM (1972) Solução numérica de equações diferenciais parciais. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Reichardt K (1996) Dinâmica da matéria e da energia em ecossistemas. 2a ed. Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Reichardt K (1985) Processos de transferência no sistema solo-planta-atmosfera. Fundação Cargill, Campinas

    Google Scholar 

  • Reichardt K, Timm LC, Bacchi OOS, Oliveira JCM, Dourado-Neto D (2004) A parameterized equation to estimate hydraulic conductivity in the field. Austr J Soil Res 42:283–287

    Article  Google Scholar 

  • Rose CW (1966) Agricultural physics. Pergamon Press, Oxford

    Google Scholar 

  • Rose CW, Stern WR, Drummond JE (1965) Determination of hydraulic conductivity as a function of depth and water content in situ. Austr J Soil Res 3:1–9

    Article  Google Scholar 

  • Rosenberg NJ, Blad BL, Verma SB (1983) Micro-climate: the biological environment. John Wiley & Sons, New York, NY

    Google Scholar 

  • Sisson JB, Ferguson AH, van Genuchten MT (1980) Simple method for prediction drainage from field plots. Soil Sci Soc Am J 44:1147–1152

    Article  Google Scholar 

  • Swartzendruber D (1962) Non Darcy behavior in liquid saturated porous media. J Geophys Res 67:5205–5213

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). The Movement of Water in the Systems. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_7

Download citation

Publish with us

Policies and ethics