Skip to main content

The Equilibrium State of Water in the Systems

  • Chapter
  • First Online:
Soil, Plant and Atmosphere

Abstract

The state of equilibrium of water in the Soil-Plant-Atmosphere System (SPAS) is essential for the understanding of the dynamic processes that occur in the system, which will be dealt in the chapters to come. We introduce thermodynamic concepts to the state of water in a universal form, with a physical understanding for agronomists, environmentalists, biologists and all scientists interested in deeply studying the SPAS as a whole. The concepts are first applied to the simplest equilibrium state, which is that of pure water in a glass, then progressively coming to more complex situations of agricultural crops in the field. It is shown why the general tendency of water is to move spontaneously from the soil to the plant, and from the plant to the atmosphere. For this, the concept of total potential of the water is explored and applied to the most different situations. Soil water retention, available water to plants, and several other concepts related to irrigation and soil management are discussed, all related to the understanding of the energy status of the water in the SPAS. Of great importance is also the presentation of the mostly used instruments for the quantification of water in different systems, and for the measurement of the status of energy of the water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelocci LR (2002) Água na planta e trocas gasosas/energéticas com a atmosfera: introdução ao tratamento biofísico. Angelocci LR, Piracicaba

    Google Scholar 

  • Bacchi OOS, Reichardt K, Calvache M (2002) Neutron and gamma probes: their use in agronomy. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Bakker G, van Der Ploeg MJ, de Rroij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK, Kruidhof H (2007) New polymer tensiometers: measuring matric pressures down to the wilting point. Vadose Zone J 6:196–202

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis. American Society of Agronomy; Soil Science Society of America, Madison, pp 363–375

    Google Scholar 

  • Campbell GS, Gardner WH (1971) Psychrometric measurement of soil water potential: temperature and bulk density effect. Soil Sci Soc Am Proc 35:8–12

    Article  Google Scholar 

  • Carneiro C, De Jong E (1985) In situ determination of the slope of the calibration curve of a neutron probe using a volumetric technique. Soil Sci 139:250–254

    Article  Google Scholar 

  • Cássaro FAM, Tominaga TT, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC (2000) The use of a surface gamma-neutron gauge to explore compacted soil layers. Soil Sci 165:665–676

    Article  Google Scholar 

  • Cassel DK, Klute A (1986) Water potential: tensiometry. In: Klute A (ed) Methods of soil analysis. American Society of Agronomy; Soil Science Society of America, Madison, pp 563–596

    Google Scholar 

  • Colman EA, Hendrix TM (1949) Fiberglass electrical soil moisture instrument. Soil Sci 67:425–438

    Article  CAS  Google Scholar 

  • Crestana S, Mascarenhas S, Pazzi-Mucelli RS (1985) Static and dynamic three dimensional studies of water in soil using computed tomographic scanning. Soil Sci 140:326–332

    Article  Google Scholar 

  • Davidson JM, Nielsen DR, Biggar JW (1963) The measurement and description of water flow through Columbia Silt Loam and Hesperia Sandy Loam. Hilgardia 34:601–617

    Article  Google Scholar 

  • Dourado-Neto D, Nielsen DR, Hopmans JW, Reichardt K, Bacchi OOS (2000) Software to model soil water retention curves (SWRC, version 2.00). Sci Agric 57:191–192

    Article  Google Scholar 

  • Dourado-Neto D, Timm LC, Oliveira JCM, Reichardt K, Bacchi OOS, Tominaga TT, Cassaro FAM (1999) State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Sci Agric 56:1215–1221

    Article  Google Scholar 

  • Durigon A, de Jong van Lier Q (2011) Determinação das propriedades hidráulicas do solo utilizando tensiômetros de polímeros em experimentos de evaporação. Rev Bras Cienc Solo 35:1271–1276

    Article  Google Scholar 

  • Durigon A, Gooren HPA, de Jong van Lier Q, Metselaar K (2011) Measuring hydraulic conductivity to wilting point using polymer tensiometers in an evaporation experiment. Vadose Zone J 10:741–746

    Article  Google Scholar 

  • Ehlers W, Goss M (2016) Water dynamics in plant production, 2nd edn. CABI, Croydon

    Book  Google Scholar 

  • Ferraz ESB (1983) Gamma-ray attenuation to measure soil water content and/or bulk densities of porous media. In: IAEA Symposium, Aix-en-Provence, France, pp 449–460

    Google Scholar 

  • Gardner WH, Calissendorff C (1967) Gamma-ray and neutron attenuation measurement of soil bulk density and water content. In: IAEA and FAO Symposium. Isotope and radiation techniques in soil physics and irrigation studies, Istanbul, pp 101–113

    Google Scholar 

  • Gardner WH, Campbell GS, Calissendorff C (1972) Systematic and random errors in dual gamma energy soil bulk density and water content measurements. Soil Sci Soc Am Proc 36:393–398

    Article  Google Scholar 

  • Gardner WR, Kirkham D (1952) Determination of soil moisture by neutron scattering. Soil Sci 73:391–401

    Article  CAS  Google Scholar 

  • Greacen EL (1982) Soil water assessment by the neutron method. CSIRO, Adelaide

    Google Scholar 

  • Haines WB (1930) Studies of the physical properties of soils: V. The hysteresis effects in capillary properties and the modes of moisture distribution associated. J Agric Sci 20:97–116

    Article  CAS  Google Scholar 

  • Hakansson I (1990) A method for characterizing the state of compactness of the plough layer. Soil Tillage Res 16:105–120

    Article  Google Scholar 

  • Hakansson I, Lipiec J (2000) A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res 53:71–85

    Article  Google Scholar 

  • Hu W, Shao MA, Wang QJ, Reichardt K (2008) Soil water content variability of the surface layer of a loess plateau hillside in China. Sci Agric 65:277–289

    Article  Google Scholar 

  • IAEA (1976) Tracer manual on crops and soils. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jensen PA, Somer E (1967) Scintillation techniques in soil-moisture and density measurements. In: IAEA and FAO Symposium. Isotope and radiation techniques in soil physics and irrigation studies, Istanbul, pp 31–48

    Google Scholar 

  • Kirda C, Reichardt K (1992) Comparison of neutron moisture gauges with non-nuclear methods to measure field soil water status. Sci Agric 49:111–121 (special number)

    Article  Google Scholar 

  • Kirkham MB (2014) Principles of soil and plant water relations, 2nd edn. Academic, Oxford

    Google Scholar 

  • Kramer PJ, Boyer PJ (1995) Water relations of plants and soils. Academic, New York

    Google Scholar 

  • Libardi PL (2012) Dinâmica da água no solo, 2nd edn. EDUSP, São Paulo

    Google Scholar 

  • Macedo A, Vaz CMP, Naime JM, Jorge LAC, Crestana S, Cruvinel PE, Pereira JCD, Guimarães MF, Ralisch R (2000) Soil management impact and wood science – recent contributions of Embrapa Agricultural Instrumentation Center using CT imaging. In: Cruvinel PE, Colnago LA (eds) Advances in agricultural tomography. Embrapa Agricultural Instrumentation, São Carlos, pp 44–54

    Google Scholar 

  • Miller EE, Miller RD (1956) Physical theory of capillary flow phenomena. J Appl Phys 27:324–332

    Article  CAS  Google Scholar 

  • Miller EE, Miller RD (1955a) Theory of capillary flow: I. Practical implications. Soil Sci Soc Am Proc 19:267–271

    Article  Google Scholar 

  • Miller EE, Miller RD (1955b) Theory of capillary flow: II. Experimental information. Soil Sci Soc Am Proc 19:271–275

    Article  Google Scholar 

  • Moraes SO (1991) Heterogeneidade hidráulica de uma Terra Roxa Estruturada. PhD Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil

    Google Scholar 

  • Nobel PS (1983) Biophysical, plant physiology and ecology. W.H. Freeman & Company, New York

    Google Scholar 

  • Oertli JJ (1984) Water relations in cell walls and cells in the intact plants. Z Pflanz Bod 47:187–197

    Article  Google Scholar 

  • Paltineanu IC, Starr JL (1997) Real-time soil water dynamics using multisensor capacitance probes: laboratory calibrations. Soil Sci Soc Am J 61:1576–1585

    Article  CAS  Google Scholar 

  • Philip JR (1964) Similarity hypothesis for capillary hysteresis in porous materials. J Geophys Res 69:1553–1562

    Article  Google Scholar 

  • Pires LF, Borges JAR, Bacchi OOS, Reichardt K (2010) Twenty-five years of computed tomography in soil physics: a literature review of the Brazilian contribution. Soil Tillage Res 110:197–210

    Article  Google Scholar 

  • Pires LF, Macedo JR, Souza MD, Bacchi OOS, Reichardt K (2002) Gamma-ray computed tomography to characterize soil surface sealing. Appl Radiat Isot 57:375–380

    Article  CAS  Google Scholar 

  • Poulovassilis A (1962) Hypothesis of pore water, an application of the concept of independent domains. Soil Sci 93:460–463

    Article  Google Scholar 

  • Rawlins SL (1966) Theory for thermocouple psychrometers used to measure water potential in soil and plant samples. Agric Met 3:293–310

    Article  Google Scholar 

  • Reichardt K (1965) Uso das radiações gama na determinação da umidade e da densidade do solo. PhD Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil

    Google Scholar 

  • Reichardt K (1987) A água em sistemas agrícolas. Manole, Barueri, Brazil

    Google Scholar 

  • Reichardt K, Portezan-Filho O, Bacchi OOS, Oliveira JCM, Dourado-Neto D, Pilotto JE, Calvache M (1997) Neutron probe calibration correction by temporal stability parameters of soil water content probability distribution. Sci Agric 54:17–21 (special number)

    Article  Google Scholar 

  • Rock PA (1969) Chemical thermodynamics: principles and applications. The Macmillan Company, Toronto

    Google Scholar 

  • Schindler U (1980) Ein schnellverfahren zur messung der wasserleitfähigkeit im teilgesättigten boden an stechzylinderproben. Arch Acker-u Pflanzenbau u Bod 24:1–7

    Google Scholar 

  • SENTEK (2001) Calibration of Sentek soil moisture sensors. Sentek Pty Ltd, Stepney, Australia

    Google Scholar 

  • Serrarens D, Macintyre JL, Hopmans JW, Bassoi LH (2000) Soil moisture calibration of TDR multi-level probes. Sci Agric 57:349–354

    Article  Google Scholar 

  • Silva AP, Bruand A, Tormena CA, da Silva EM, Santos GG, Giarola NFB, Guimarães RML, Marchão RL, Klein VA (2014) Indicators of soil physical quality: from simplicity to complexity. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of soil physics in environmental analysis: measuring, modelling and data integration. Springer, New York, pp 201–221

    Google Scholar 

  • Silva AP, Tormena CA, Dias Junior MS, Imhoff S, Klein VA (2010) Indicadores da qualidade do solo. In: De Jong van Lier Q (ed) Física do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 241–282

    Google Scholar 

  • Stolf R (1992) Teoria e teste experimental de fórmulas de transformação dos dados de penetrômetro de impacto em resistência do solo. Rev Bras Cienc Solo 15:229–235

    Google Scholar 

  • Stolf R, Cassel DK, King LD, Reichardt K (1998) Measuring mechanical impedance in clayey gravelly soils. Braz J Soil Sci 22:189–196

    Google Scholar 

  • Stolf R, Thurler AM, Bacchi OOS, Reichardt K (2011) Method to estimate soil macroporosity and microporosity based on sand content and bulk density. Braz J Soil Sci 35:447–459

    Google Scholar 

  • Taiz L, Zeiger E, Moller IM, Murphy A (2018) Fundamentals of plant physiology. Oxford University Press, Oxford

    Google Scholar 

  • Taylor SA, Ashcroft GL (1972) Physical edaphology: the physics of irrigated and non-irrigated soils. W.H. Freeman & Company, New York

    Google Scholar 

  • Timm LC, Pires LF, Roveratti R, Arthur RCJ, Reichardt K, Oliveira JCM, Bacchi OOS (2006) Field spatial and temporal patterns of soil water content and bulk density changes. Sci Agric 63:55–64

    Article  Google Scholar 

  • Tominaga TT, Cássaro FAM, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC (2002) Variability of soil water content and bulk density in a sugarcane field. Aust J Soil Res 40:605–614

    Google Scholar 

  • Topp GC (1969) Soil water hysteresis measure in a sandy loam and compared with the hysteresis domain model. Soil Sci Soc Am Proc 33:645–651

    Article  Google Scholar 

  • Topp GC, Davis JL (1985) Measurement of soil water content using time domain reflectometry (TDR): a field evaluation. Soil Sci Soc Am J 49:19–24

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR. I. Applications to wetting fronts and steeps gradients. Soil Sci Soc Am J 46:672–678

    Article  Google Scholar 

  • Topp GC, Miller EE (1966) Hysteresis moisture characteristics and hydraulic conductivities for glass-bead media. Soil Sci Soc Am Proc 30:156–162

    Article  Google Scholar 

  • Tschapek M (1984) Criteria for determining the hydrophilicity-hydrophobicity of soil. J Plant Nutr Soil Sci 147:137–149

    CAS  Google Scholar 

  • Van Bavel CHM, Underwood N, Swanson RW (1956) Soil moisture measurement by neutron moderation. Soil Sci 82:29–41

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vaz CMP, Crestana S, Mascarenhas S, Cruvinel PE, Reichardt K, Stolf R (1989) Using a computed tomography miniscaner for studying tillage induced soil compaction. Soil Technol 2:313–321

    Article  Google Scholar 

  • Vaz CMP, Hopmans JW (2001) Simultaneous measurement of soil penetration resistance and water content with a combined penetrometer-TDR moisture probe. Soil Sci Soc Am J 65:4–12

    Article  CAS  Google Scholar 

  • Vaz CMP, Tuller M, Lasso PRO, Crestana S (2014) New perspectives for the application of high-resolution benchtop X-ray MicroCT for quantifying void, solid and liquid phases in soils. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of soil physics in environmental analysis: measuring, modelling and data integration. Springer, New York, pp 261–281

    Google Scholar 

  • Villa Nova NA, Oliveira AS, Reichardt K (1992) Performance and test of a direct reading ‘air-pocket’ tensiometer. Soil Technol 5:283–287

    Article  Google Scholar 

  • Villa Nova NA, Reichardt K, Libardi PL, Moraes SO (1989) Direct reading “air-pocket” tensiometer. Soil Technol 2:403–407

    Article  Google Scholar 

  • Villagra MM, Matsumoto OM, Bacchi OOS, Moraes SO, Libardi PL, Reichardt K (1988) Tensiometria e variabilidade espacial em Terra Roxa Estruturada. Rev Bras Cienc Solo 12:205–210

    Google Scholar 

  • Wiebe HH, Campbell CS, Gardner WH, Rawlins SL, Cary JW, Brown W (1971) Measurement of plant and soil water status. Utah Agricultural State, Logan

    Google Scholar 

  • Wind GP (1966) Capillary conductivity data estimated by a simple method. In: International Association for Scientific Hydrology. Wageningen Symposium, Water in the unsaturated zone, Wageningen, pp 181–191

    Google Scholar 

  • Zemansky MW, Dittman RH (1997) Heat and thermodynamics: an intermediate textbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Zimmermann U, Stendle E (1978) Physical aspects of water relations of plant cells. Adv Bot Res 6:45–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). The Equilibrium State of Water in the Systems. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_6

Download citation

Publish with us

Policies and ethics