Skip to main content

The Water Balance in Agricultural and Natural Systems

  • Chapter
  • First Online:
Book cover Soil, Plant and Atmosphere

Abstract

The complete and direct water balance for agricultural and natural systems is presented in detail, discussing all components: rainfall, irrigation, runoff, evapotranspiration, drainage below the root zone, and, finally, the changes of soil water content as a function of depth and time close the balance. Evaluation of soil erosion is presented in conjunction with the discussion of runoff. Other methodologies to obtain the water balance are also discussed, like those based mainly on meteorological data. It is shown that the water balance is a fundamental tool for water management practices. At the end of the chapter, a holistic view of the Soil-Plant-Atmosphere System is presented based on the knowledge of the water balance components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albaladejo Montoro J, Stocking MA (1989) Comparative evaluation of two models in predicting storm soil loss from erosion plots in semi-arid Spain. Catena 16:227–236

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment: part I. Model development. J Am Water Resour Assoc 34:73–89

    Article  CAS  Google Scholar 

  • Bacchi OOS, Reichardt K, Sparovek G, Ranieri SBL (2000) Soil erosion evaluation in a small watershed in Brazil through 137-Cs fallout redistribution analysis and conventional models. Acta Geol Hisp 35:251–259

    Google Scholar 

  • Bacchi OOS, Reichardt K, Sparovek G (2003) Sediment spatial distribution evaluated by three methods and its relation to some soil properties. Soil Tillage Res 69:117–125

    Article  Google Scholar 

  • Bertoni J, Lombardi Neto F (1990) Conservação do solo. Ícone, São Paulo

    Google Scholar 

  • Beskow S (2009) LASH model: a hydrological simulation tool in GIS framework. Departamento de Engenharia, Universidade Federal de Lavras, Lavras, Tese de Doutorado

    Google Scholar 

  • Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River, Brazil using distributed modeling. Catena 79:49–59

    Article  Google Scholar 

  • Beskow S, Mello CR, Norton LD, Silva AM (2011a) Performance of a distributed semi-con-ceptual hydrological model under tropical watershed conditions. Catena 86:160–171

    Article  Google Scholar 

  • Beskow S, Mello CR, Norton LD (2011b) Development, sensitivity and uncertainty analysis of LASH model. Sci Agric 68:265–274

    Article  Google Scholar 

  • Beskow S, Timm LC, Tavares VEQ, Caldeira TL, Aquino LS (2016) Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata River basin, Southern Brazil. Hydrol Sci J 61:2567–2578

    Article  Google Scholar 

  • Bortolotto RP, Bruno IP, Dourado-Neto D, Timm LC, Silva AN, Reichardt K (2011) Soil profile internal drainage for a central pivot fertigated coffee crop. Rev Ceres 58:723–728

    Article  Google Scholar 

  • Caldeira TL, Mello CR, Beskow S, Timm LC, Viola MR (2019) LASH hydrological model: an analysis focused on spatial discretization. Catena 173:183–193

    Article  Google Scholar 

  • Camargo AP (1961) Contribuição para a determinação da evapotranspiração potencial no Estado de São Paulo. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Camargo AP (1964) Balanço hídrico no Estado de São Paulo. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  • Camargo AP (1978) Balanço hídrico no Estado de São Paulo. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  • Correchel V, Bacchi OOS, Maria IC, Dechen SCF, Reichardt K (2006) Erosion rates evaluated by the 137 Cs technique and direct measurements on long-term runoff plots. Soil Tillage Res 86:199–208

    Article  Google Scholar 

  • Daian FJ, Vachaud G (1972) Methode d’evaluation du bilan hydrique in situ a partir de la mesure des teneures en eau et des succions. In: Symposium on isotopes and radiation in soil-plant relationships including forestry. International Atomic Energy Agency, Vienna, pp 649–660

    Google Scholar 

  • De Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I. Theory, input and output. Hydrol Process 10:1107–1117

    Article  Google Scholar 

  • Doorenbos J, Kassam AH (1994) Efeito da água no rendimento das culturas. Tradução de H Ghey HR, Sousa AA, Damasceno FAV, Medeiros JF (tradutores). Universidade Federal da Paraíba, Campina Grande

    Google Scholar 

  • Dourado-Neto D, De Jong van Lier Q (1993) Estimativa do armazenamento de água no solo para realização de balanço hídrico. Rev Bras Ciênc Solo 17:9–15

    Google Scholar 

  • Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031

    Article  Google Scholar 

  • Fagan EB (2007) A cultura da soja: modelo de crescimento e aplicação da estrobilurina piraclostrobina. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Foster GR, Moldenhauer WC, Wischmeier WH (1985) Transferability of US technology for prediction and control of erosion in the tropics. In: Symposium on soil erosion and conservation in the tropics. American Society of Agronomy, Madison, WI, pp 135–149

    Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50:1211–1250

    Article  CAS  Google Scholar 

  • Heifig LC (2002) Plasticidade da cultura da soja (Glycine max (L.) Merril) em diferentes arranjos espaciais. Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil

    Google Scholar 

  • Hickley R, Smith A, Jankowski P (1994) Slope length calculations from a DEM within ARC/Info grid. Comp Env Urban Sys 18:365–380

    Article  Google Scholar 

  • Knisel WG (1980) CREAMS: a field-scale model for chemicals, runoff and erosion from agricultural management systems. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Laflen JM, Lane LJ, Foster GR (1991) WEPP: a new generation of erosion prediction technology. J Soil Water Conserv 46:34–38

    Google Scholar 

  • Lal R (1988) Soil erosion by wind and water: problems and prospects. In: Lal R (ed) Soil erosion research methodology. Soil and Water Conservation Society of America, Ankeny, IA, pp 1–8

    Google Scholar 

  • Lane LJ, Renard KG, Foster GR, Laflen JM (1992) Development and application of modern soil erosion prediction technology. Aust J Soil Res 30:893–912

    Article  Google Scholar 

  • LaRue ME, Nielsen DR, Hagan RM (1968) Soil water flux below a ryegrass root zone. Agron J 60:625–629

    Article  Google Scholar 

  • Lima WP, Reichardt K (1977) Regime de água do solo sob florestas homogêneas de eucalipto e pinheiro. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Lombardi Neto F, Bertoni J (1975) Erodibilidade de solos paulistas. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  • Lombardi Neto F, Moldenhauer WC (1992) Erosividade da chuva: sua distribuição e relação com as perdas de solo em Campinas (SP). Bragantia 51:189–196

    Article  Google Scholar 

  • Marin FR, Sentelhas PC, Ungaro MRG (2000) Perda de rendimento potencial da cultura do girassol por deficiência hídrica, no Estado de São Paulo. Sci Agric 57:1–6

    Article  Google Scholar 

  • Mello CR, Viola MR, Norton LD, Silva AM, Weimar FA (2008) Development and application of a simple hydrologic model simulation for a Brazilian headwater basin. Catena 75:235–247

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Ser A 193:120–145

    Article  CAS  Google Scholar 

  • Pereira AR, Ferraz ESB, Reichardt K, Libardi PL (1974) Estimativa da evapotranspiração e da drenagem profunda em cafezais cultivados em solos podzolizados Lins e Marília. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Agropecuária, Guaíba

    Google Scholar 

  • Pinto VM, Reichardt K, van Dam J, Van Lier QDJ, Bruno IP, Durigon A, Dourado-Neto D, Bortolotto RP (2015) Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna. Agric Water Manag 140C:130–140

    Article  Google Scholar 

  • Pires LF, Bacchi OOS, Correchel V, Reichardt K, Filippe J (2009) Riparian forest potential to retain sediment and carbon evaluated by the 137 Cs fallout and carbon isotopic technique. Anais Acad Bras Ci 81:271–279

    Article  CAS  Google Scholar 

  • Ranieri SBL (1996) Avaliação de métodos e escalas de trabalho para determinação de risco de erosão em bacia hidrográfica utilizando Sistema de Informações Geográficas (SIG). Master Dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, Brazil

    Google Scholar 

  • Ranzani G (1971) A marcha anual d’água disponível do solo. Escola Agricultura Luiz de Queiroz/Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Reichardt K, Libardi PL, Santos JM (1974) An analysis of soil-water movement in the field. II. Water balance in a snap bean crop. Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba

    Google Scholar 

  • Reichardt K, Libardi PL, Saunders LCU, Cadima A (1979) Dinâmica da água em cultura de milho. Rev Bras Ciênc Solo 3:1–5

    Google Scholar 

  • Reichardt K, Libardi PL, Moraes SO, Bacchi OOS, Turatti AL, Villagra MM (1990) Soil spatial variability and its implications on the establishment of water balances. International Congress of Soil Science, International Union Soil Science, Kyoto, pp 41–46

    Google Scholar 

  • Reichardt K, Angelocci LR, Bacchi OOS, Pilotto JE (1995) Daily rainfall variability at a local scale (1,000 ha), in Piracicaba, SP, Brazil, and its implications on soil recharge. Sci Agric 52:43–49

    Article  Google Scholar 

  • Renard KG, Mausbach MJ (1990) Tools for conservation. In: Larson WE, Foster GR, Allmaras RR, Smith CM (eds) Proceedings of soil erosion and productivity workshop. University of Minnesota, Minneapolis, MN, pp 55–64

    Google Scholar 

  • Renger M, Giesel W, Strebel O, Lorch S (1970) Erste ergebnisse zur quantitativen erfassung der wasserhaushaltskomponenten in der ungessättigten bodenzone. Z Pflanzenernährung Bod 126:15–35

    Article  Google Scholar 

  • Rijtema PE, Aboukhaled A (1975) Crop water use. In: Aboukhaled A, Arar A, Balba AM, Bishay BG, Kadry LT, Rijtema PE, Taher A (eds) Research on crop water use, salt affect-ed soils and drainage in the Arab Republic of Egypt. FAO Regional Office for the Near East, Cairo, pp 5–61

    Google Scholar 

  • Rolim GS, Sentelhas PC, Barbieri V (1998) Planilhas no ambiente Excell para cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Rev Bras Agromet 6:133–137

    Google Scholar 

  • Rose CW, Stern WR (1967) Determination of withdrawal of water from soil by crop roots as function of depth and time. Aust J Soil Res 5:11–19

    Article  Google Scholar 

  • Silva AL, Roveratti R, Reichardt K, Bacchi OOS, Timm LC, Bruno IP, Oliveira JCM, Dourado-Neto D (2006) Variability of water balance components in a coffee crop grown in Brazil. Sci Agric 63:105–114

    Article  Google Scholar 

  • Silva AL, Bruno IP, Reichardt K, Bacchi OOS, Dourado-Neto D, Favarin JL, Costa FMP, Timm LC (2009) Soil water extraction by roots and Kc for the coffee crop. Agriambi 13:257–261

    Google Scholar 

  • Silva AN, Bortolotto RP, Tomaz HVQ, Reis LG, Olinda RA, Heiffig-del-Águila LS, Reichardt K (2013) Pot irrigation control through the climatologic sequential water balance. Rev Agric 88:101–106

    Google Scholar 

  • Steinmetz AA, Cassalho F, Caldeira TL, Oliveira VA, Beskow S, Timm LC (2018) Assessment of soil loss vulnerability in data-scarce watersheds in southern Brazil. Cienc Agrotecnol 42:575–587

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Drexel Institute of Technology, Centerton, NJ

    Google Scholar 

  • Timm LC, Oliveira JCM, Tominaga TT, Cássaro FAM, Reichardt K, Bacchi OOS (2002) Water balance of a sugarcane crop: quantitative and qualitative aspects of its measurement. Agriambi 6:57–62

    Google Scholar 

  • Timm LC, Dourado-Neto D, Bacchi OOS, Hu W, Bortolotto RP, Silva AL, Bruno IP, Reichardt K (2011) Temporal variability of soil water storage evaluated for a coffee field. Aust J Soil Res 49:77–86

    Article  Google Scholar 

  • Toy TJ, Osterkamp WR (1995) The applicability of RUSLE to geomorphic studies. J Soil Water Conserv 50:498–503

    Google Scholar 

  • Vieira SR, Lombardi Neto F (1995) Variabilidade espacial do potencial de erosão das chuvas do estado de São Paulo. Bragantia 54:405–412

    Article  Google Scholar 

  • Walling DE, Quine TA (1993) Use of caesium-137 as a tracer of erosion and sedimentation. In: Handbook for application of the Caesium-137 technique, Exeter. Department of Geography, University of Exeter, Exeter

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation planning. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Wischmeier WH, Johnson CB, Cross BW (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193

    Google Scholar 

  • Young R, Onstad C, Bosch D, Anderson W (1986) Agricultural nonpoint source pollution model: a watershed analysis tool, model documentation. Agricultural Research Service, US Department of Agriculture, Morris, MN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). The Water Balance in Agricultural and Natural Systems. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_15

Download citation

Publish with us

Policies and ethics