Skip to main content

Metabolomic Approaches in Plant Research

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume III

Abstract

Metabolomics is an emerging approach in the realm of omics. Despite its rapid emergence two decades ago, it has already proven an impressive potential in improving traits related to agriculture. This chapter will help readers to familiarize with plant metabolites and their importance in plants and analytical techniques used in metabolomics and computational metabolomics (from digital recording of spectra to their identification as well as quantification). Web tools, software, and metabolome databases commonly used for plant metabolomics are summarized. We also discussed progress in the field of metabolomics data integration with related “omics” fields, particularly functional genomics. Challenges faced by agricultural metabolomics along with future research avenues to combat hunger (in terms of both quality and quantity) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):e1–e1

    CAS  PubMed  Google Scholar 

  • Aha D, Kibler WD, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66

    Google Scholar 

  • Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22(2):239–244

    Article  CAS  PubMed  Google Scholar 

  • Andreev VP, Rejtar T, Chen HS, Moskovets EV, Ivanov AR, Karger BL (2003) A universal denoising and peak picking algorithm for LC− MS based on matched filtration in the chromatographic time domain. Anal Chem 75(22):6314–6326

    Article  CAS  PubMed  Google Scholar 

  • Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Wurtele ES (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152(4):1807–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckonert O, Bollard ME, Ebbels TM, Keun HC, Antti H, Holmes E, Nicholson JK (2003) NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Anal Chim Acta 490(1–2):3–15

    Article  CAS  Google Scholar 

  • Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, Chen J (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22(15):1902–1909

    Article  CAS  PubMed  Google Scholar 

  • Bersanelli M, Mosca E et al (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinforma 17(Suppl 2):15

    Article  CAS  Google Scholar 

  • Bertsch A, Gröpl C, Reinert K, Kohlbacher O (2011) Open MS and TOPP: open source software for LC-MS data analysis. In M. Hamacher, M. Eisenacher, & C. Stephan.Data mining in proteomics. New York, NY: Humana Press, p 353–367 

    Google Scholar 

  • Bingol K, Brüschweiler R (2015) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18(5):471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang F, Brüschweiler R (2015) Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem 87(7):3864–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, Shulaev V (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7(3):329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33(3):290–304

    Article  CAS  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2008) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(1):3–21

    Article  CAS  Google Scholar 

  • Caretto S, Linsalata V, Colella G, Giovanni M, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Ordóñez WO, Tamarozzi ER et al (2017) Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochem Res 42(10):2826–2830

    Article  CAS  PubMed  Google Scholar 

  • Chandra H, Bishnoi P et al (2017) Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plan Theory 6(2):16

    Google Scholar 

  • Choi HK, Choi YH, Verberne M, Lefeber AW, Erkelens C, Verpoorte R (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65(7):857–864

    Article  CAS  PubMed  Google Scholar 

  • Conforti F, Loizzo MR et al (2010) Quantitative determination of Amaryllidaceae alkaloids from Galanthus reginae-olgae subsp. vernalis and in vitro activities relevant for neurodegenerative diseases. Pharm Biol 48(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830(6):3670–3695

    Article  CAS  Google Scholar 

  • Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Markley JL (2008) Metabolite identification via the madison metabolomics consortium database. Nat Biotechnol 26(2):162

    Article  CAS  PubMed  Google Scholar 

  • Daskalchuk T, Ahiahonu P, Heath D, Yamazaki Y (2006) The use of non-targeted metabolomics in plant science. In: Plant metabolomics. Springer, Berlin, pp 311–325

    Chapter  Google Scholar 

  • Daviss, Bennett (2005) Growing pains for metabolomics. Scientist 19(8):25–28

    Google Scholar 

  • de Falco BG, Incerti et al (2017) Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Ind Crop Prod 99:86–96

    Article  CAS  Google Scholar 

  • De Souza DP, Saunders EC, McConville MJ, Likić VA (2006) Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22(11):1391–1396

    Article  CAS  PubMed  Google Scholar 

  • De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–791

    Article  CAS  PubMed  Google Scholar 

  • Defernez M, Le Gall G (2013) Strategies for data handling and statistical analysis in metabolomics studies. In In: Rolin D (ed) Advances in botanical research, vol 67. Elsevier Academic Press, San Diego, USA, pp 493–555

    Google Scholar 

  • Dettmer K, Aronov PA et al (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinforma 7(1):3

    Article  CAS  Google Scholar 

  • Edward HD (2014) Biochemical facts behind the definition and properties of metabolites, Ebook, Biochemistry and Biophysics and Faculty of Nutrition Texas A&M University

    Google Scholar 

  • Farag MA, Porzel A, Schmidt J, Wessjohann LA (2012) Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics 8(3):492–507

    Article  CAS  Google Scholar 

  • Fernie AR, Klee HJ (2011) The use of natural genetic diversity in the understanding of metabolic organization and regulation. Front Plant Sci 2:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Francisco M, Joseph B et al (2016) Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Front Plant Sci 7:1010

    PubMed  PubMed Central  Google Scholar 

  • Fukushima A, Kusano M (2013) Recent progress in the development of metabolome databases for plant systems biology. Front Plant Sci 4:73

    Article  PubMed  PubMed Central  Google Scholar 

  • George P (2005) Metabolomics comes of age? Scientist 19(11):8

    Google Scholar 

  • Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374. https://doi.org/10.3389/fpls.2017.00374

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199

    Article  CAS  PubMed  Google Scholar 

  • Hegeman AD (2010) Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Herwig OG, Ludwig-Muller J (2014) Plant natural products: synthesis, biological functions and practical applications, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hill CB, Taylor JD et al (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154

    Article  CAS  PubMed  Google Scholar 

  • Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Chaudhary K et al (2017) More is better: recent progress in multi-omics data integration methods. Front Genet 8:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M, Kanaya S, Aoki K, Shibata D (2008) Metabolite annotations based on the integration of mass spectral information. Plant 54(5):949–962

    CAS  Google Scholar 

  • Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Ivanisevic J et al (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156

    Article  CAS  PubMed  Google Scholar 

  • Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjöström M, Plumb R, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130(5):701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52(3):520–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorge TF, Rodrigues JA et al (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35(5):620–649

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katajamaa M, Orešič M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi J, Shinozaki K, Hirayama T (2004) Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol 45(8):1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549

    Article  CAS  PubMed  Google Scholar 

  • Kleessen S, Nikoloski Z (2012) Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst Biol 6:16–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoch D, Riewe D et al (2017) Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. J Exp Bot 68(7):1655–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan P, Kruger NJ et al (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56(410):255–265

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Akiyama K et al (2013) UniVIO: a multiple omics database with hormonome and transcriptome data from rice. Plant Cell Physiol 54(2):e9–e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo T, Kobayashi M et al (2017) TOMATOMICS: a web database for integrated omics information in tomato. Plant Cell Physiol 58(1):e8–e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Yadav A, Gupta N, Kumar S, Gupta N, Kumar S, Gurjar H (2015) Metabolites in plants and its classification. World J Pharm Pharm 4:287–305

    Google Scholar 

  • Kumar R, Bohra A et al (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamesch P, Berardini TZ et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(Database issue):D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  • Last RL, Jones AD et al (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167

    Article  CAS  PubMed  Google Scholar 

  • Lipka AE, Gore MA et al (2013) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes Genomes Genet 3(8):1287–1299

    Article  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Abdullah AA et al (2017) Novel approach to classify plants based on metabolite-content similarity. Biomed Res Int 2017:5296729

    PubMed  PubMed Central  Google Scholar 

  • Lundberg P, Vogel T, Malusek A, Lundquist PO, Cohen L, Dahlqvist O (2005) MDL – the magnetic resonance metabolomics database (mdl.imv.liu.se). ESMRMB, Basel

    Google Scholar 

  • Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi V, Farimani MM et al (2015) A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress. Anal Biochem 478:65–72

    Article  CAS  PubMed  Google Scholar 

  • Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda F, Nakabayashi R et al (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Meier R, Ruttkies C et al (2017) Bioinformatics can boost metabolomics research. J Biotechnol 261:137–141

    Article  CAS  PubMed  Google Scholar 

  • Mirza SB, Bokhari H, Fatmi MQ (2015) Exploring natural products from the biodiversity of Pakistan for computational drug discovery studies: collection, optimization, design and development of a chemical database (ChemDP). Curr Comput Aided Drug Des 11(2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutwil M, Klie S et al (2011) PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23(3):895–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ncube B, Staden J (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20:12698–12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ncube B, Finnie J, Van Staden J (2012) Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. S Afr J Bot 82:11–20

    Article  Google Scholar 

  • Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23(11):544–546

    Article  CAS  PubMed  Google Scholar 

  • Nielsen NPV, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 805(1–2):17–35

    Article  CAS  Google Scholar 

  • Nix HA (1990) National geographic information system – an achievable objective? In: Keynote address, Aurisa

    Google Scholar 

  • Noel JP, Austin MB, Bomati EK (2005) Structure–function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obayashi T, Okamura Y et al (2014) Evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyanagi H, Takano T et al (2015) Plant omics data center: an integrated web repository for interspecies gene expression networks with NLP-based curation. Plant Cell Physiol 56(1):e9–e9

    Article  CAS  PubMed  Google Scholar 

  • Parry MAJ, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54(4):250–259

    Article  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paupière MJ, van Heusden AW, Bovy AG (2014) The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Meta 4(4):889–920

    Google Scholar 

  • Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1481–1497

    Article  Google Scholar 

  • Pravdova V, Walczak B, Massart DL (2002) A comparison of two algorithms for warping of analytical signals. Anal Chim Acta 456(1):77–92

    Article  CAS  Google Scholar 

  • Rai A, Saito K (2016) Omics data input for metabolic modeling. Curr Opin Biotechnol 37:127–134

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam A, Kudapa H et al (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 6:1116

    PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer CA, Czedik-Eysenberg et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217

    Article  CAS  PubMed  Google Scholar 

  • Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 30(2):1–24

    Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133(1):84–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61(1):463–489

    Article  CAS  PubMed  Google Scholar 

  • Samuelsson LM, Larsson DG (2008) Contributions from metabolomics to fish research. Mol BioSyst 4(10):974–979

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Takehisa H et al (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41(Database issue):D1206–D1213

    Article  CAS  PubMed  Google Scholar 

  • Sauerschnig C, Doppler M et al (2018) Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta 8(1):1

    Article  CAS  PubMed Central  Google Scholar 

  • Sauvage C, Segura V et al (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165(3):1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada Y, Hirai MY (2013) Integrated lc-ms/ms system for plant metabolomics. Comput Struct Biotechnol J 4(5):e201301011

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, Akiyama K, Sakurai T, Matsuda F, Aoki T, Hirai MY, Saito K (2012) RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45

    Article  CAS  PubMed  Google Scholar 

  • Scott IM, Vermeer CP et al (2010) Enhancement of plant metabolite fingerprinting by machine learning. Plant Physiol 153(4):1506–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiyama Y, Okazaki K, Kikuchi J, Ikeda S (2017) NMR-based metabolic profiling of field-grown leaves from sugar beet plants harbouring different levels of resistance to Cercospora leaf spot disease. Metabolites 7(1):4. pii:E4

    Article  CAS  PubMed Central  Google Scholar 

  • Shen H, Grung B, Kvalheim OM, Eide I (2001) Automated curve resolution applied to data from multi-detection instruments. Anal Chim Acta 446(1–2):311–326

    Article  Google Scholar 

  • Shitan N (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 80(7):1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Simó C, Ibáñez C et al (2014) Metabolomics of genetically modified crops. Int J Mol Sci 15(10):18941–18966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinforma 7(1):96–108

    Article  CAS  Google Scholar 

  • Taketo O, Farit AM et al (2010) Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided Drug Des 6(3):179–196

    Article  Google Scholar 

  • Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18(suppl_2):S241–S248. The Plant Journal 54(5), 949–962

    Article  PubMed  Google Scholar 

  • Tian H, Lam S et al (2016) Metabolomics, a powerful tool for agricultural research. Int J Mol Sci 17(11):1871

    Article  CAS  PubMed Central  Google Scholar 

  • Tikunov Y, Lommen A, De Vos CR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139(3):1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohge T, de Souza LP et al (2014) Genome-enabled plant metabolomics. J Chromatogr B 966:7–20

    Article  CAS  Google Scholar 

  • Toubiana D, Fernie AR et al (2013) Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol 31(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Udayakumar M, Chandar DP, Arun N, Mathangi J, Hemavathi K, Seenivasagam R (2012) PMDB: plant metabolome database—a metabolomic approach. Med Chem Res 21(1):47–52

    Article  CAS  Google Scholar 

  • van der Hooft JJJ, Vervoort J, Bino RJ, de Vos CH (2012) Spectral trees as a robust annotation tool in LC–MS based metabolomics. Metabolomics 8(4):691–703

    Article  CAS  Google Scholar 

  • Viant MR (2008) Recent developments in environmental metabolomics. Mol BioSyst 4(10):980–986

    Article  CAS  PubMed  Google Scholar 

  • Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol Chapter 30:Unit 30.1.1-24

    PubMed  Google Scholar 

  • Wanichthanarak K, Fahrmann JF et al (2015) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10(Suppl 4):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62(6):949–957

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54(1):669–689

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Jin M et al (2018) An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant J 93(6):1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Wettschereck D, Aha DW, Mohri T (1997) A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif Intell Rev 11(1–5):273–314

    Article  Google Scholar 

  • Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Alseekh S et al (2016) Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana. PLoS Genet 12(10):e1006363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Tohge T et al (2018) Mapping the arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol Plant 11(1):118–134

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel ET, Kutchan TM (2016) Plant metabolism, the diverse chemistry set of the future. Science 353(6305):1232

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Sun H et al (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu H, Liu Y, Liu J, Zhao X, Yin Y (2016) Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal Chem 88(8):4478–4486

    Article  CAS  PubMed  Google Scholar 

  • Zierer J, Menni C et al (2015) Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14(6):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivy M, Wienkoop S et al (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha T. Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahir, A.T., Fatmi, Q., Nosheen, A., Imtiaz, M., Khan, S. (2019). Metabolomic Approaches in Plant Research. In: Hakeem, K., Shaik, N., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume III. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_7

Download citation

Publish with us

Policies and ethics