Skip to main content

Integration of “Omic” Approaches to Unravel the Heavy Metal Tolerance in Plants

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume III

Abstract

Recent adverse climatic changes have limited crop productivity, which in turn causes food crises throughout the globe, but this is more concerning for developing countries. Interest for practical genomics as well as proteomics is currently widespread to understand the mechanism(s) of stress tolerance. The information gained through the said methods would facilitate the nutritional management and metabolic and genetic improvement of plants of our interest. Genomic and proteomic studies of control and stressed plants have empowered the recognizable proof of various traits and proteins that assume vital part in granting stress resistance to plants. Therefore, identification of “stress-responsive” protein(s)/gene(s) and utilization of thus obtained data provide a great chance to reduce effects of any particular or combined stress on plant. On the other hand, it is also necessary to investigate the cross talk between key stress reaction pathways/components in order to better understand the regulation of protection mechanism. This review provides a critical and extensive analysis of the proteomic profiling of plants in reply to heavy metal stress and highlights key techniques being employed for accomplishing ever-desired success. It also revealed an account of proteins identified to impart resistance under different abiotic stresses in plants. In addition, we present the role of functional genomics and various bioinformatics tools to understand the proteome maps of heavy metal-stressed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI (2015) Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol Biochem 97:235–245

    Article  CAS  PubMed  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fischer R, Galbraith DW et al (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms–getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Cheong YH, Kim KN, Pande GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress international. Int J Plant Genomics 2011:2825–2831

    Article  Google Scholar 

  • FAO (2012) Statistical yearbook Viale delle Terme di Caracalla. Rome ISBN 978-92-5-107083-3

    Google Scholar 

  • GenomeWeb News (2001) Backed by Compaq, Bruker, and Novartis, Gene-Prot opens industrial-scale proteomics facility. 26 April (www.genomeweb.com)

    Google Scholar 

  • Gygi SP, Rist B, Gerber S, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1,5-bisphosphatecarboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831

    Article  CAS  PubMed  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, Teixeirada Silva JA, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot:1–37

    Article  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012b) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC et al (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719–726

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyanagi H, Sakata K, Komatsu S (2012) Soybean proteome database 2012: update on the comprehensive data repository for soybean proteomics. Front Plant Sci 3:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332

    Article  CAS  PubMed  Google Scholar 

  • Rensink WA, Lee Y, Liu J, Iobst S, Ouyang S, Buell CR (2005) Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and sequence-specific transcripts. BMC Genomics 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin DH, Kamal AHM, Suzuki T, Yun YH, Lee MS, Chung KY, Jeong HS, Park CH, Choi JS, Woo SH (2010) Reference proteome map of buckwheat (Fagopyrum esculentum and Fagopyrum tataricum) leaf and stem cultured under light or dark. Aust J Crop Sci 4(8):633–641

    CAS  Google Scholar 

  • Shiozaki N, Yamada M, Yoshiba Y (2005) Analysis of salt-stress inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theoretical Appl Genet 110:1177–1186

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Hettwer U, Koopmann B, Karlovsky P (2005) Conversion of cDNA differential display results (DDRT-PCR) into quantitative transcription profiles. BMC Genomics 6:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells JM, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88(20):4451–4459

    Article  CAS  Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61 a syntaxin protein in arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14(12):3009–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, Lee BH, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK, Hasegawa PM, Bressan RA (2005) Proc Natl Acad Sci U S A 102(28):9966–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirzadah, T.B., Malik, B., Hakeem, K.R. (2019). Integration of “Omic” Approaches to Unravel the Heavy Metal Tolerance in Plants. In: Hakeem, K., Shaik, N., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume III. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_4

Download citation

Publish with us

Policies and ethics