Skip to main content

Bioinformatics and Plant Stress Management

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume III

Abstract

In recent years, omics technologies have generated a vast amount of biological data, whose interpretation and management needs a sophisticated computational analysis. Bioinformatics has come to rescue, which is an interdisciplinary branch of science aimed at interpreting biological data using information technology and computer science. Integration of bioinformatics with plant science research has generated many applications like single-gene analysis, biochemical pathways, molecular techniques, sequence similarity, modelling of protein, crop improvement, crop breeding, improved nutritional quality, development of drought-resistant varieties and plant biotic/abiotic stress management. Since the data is huge, plant biologists and researchers are facing problems in the interpretation of data as they are unable to exploit available bioinformatics tools, plant-based databases and their applications. Bioinformatics has played an essential role in plant stress management with regard to the understanding of various stress signalling pathways, crosstalk between different pathways and mechanisms. It has many practical applications in current plant stress management such as understanding changes in the metabolomics and proteomics during stress conditions which ultimately helps in designing the best stress management approaches and databases. Keeping that in observation, the present chapter describes some of the key concepts and databases used in bioinformatics, with an emphasis on those relevant to plant stress management. This chapter will also cover some of the latest technologies and bioinformatics applications in today’s plant stress management strategies. Finally, we explore a few emerging research topics in this cutting-edge field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4:373–380

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2008) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25(1):130–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Parida SK, Mahto A et al (2014) Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 9:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. Silicon Biol 8(3):339–345

    CAS  Google Scholar 

  • Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön CC, Mayer KFX (2015) DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. J Biol Database Curation 2015:bav046

    Google Scholar 

  • Ambika S, Susan Mary Varghese SM, Shameer K, Udayakumar M, Sowdhamini R (2008) STIF: Hidden Markov Model-based search algorithm for the recognition of binding sites of Stress-upregulated Transcription Factors and genes in Arabidopsis thaliana. Bioinformation 2(10):431–437

    Article  Google Scholar 

  • Anonymous (2005) Pseudomonas versus Arabidopsis: models for genomic research into plant disease resistance. www.actionbioscience.org

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796

    Article  Google Scholar 

  • Attwood TK, Beck ME, Bleasby AJ, Parry-Smith DJ (1994) PRINTS–a database of protein motif fingerprints. Nucleic Acids Res 22(17):3590–3596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badjakov I, Kondakova V, Atanassov A (2012) In: Benkeblia N (ed) Current view on fruit quality in relation to human health in sustainable agriculture and new biotechnologies. CRC Press, Boca Raton, pp 303–319

    Google Scholar 

  • Baerenfaller K, Grossmann J, Grobei MA et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    Article  CAS  PubMed  Google Scholar 

  • Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28(1):45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T et al (2015) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152(4):1807–1816

    Article  CAS  Google Scholar 

  • Basse M-J, Betzi S, Morelli X, Roche P (2016) 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions. Database 2016:baw007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  • Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Edwards D (ed) Plant bioinformatics, Methods in molecular biology, vol 1374. Humana Press, New York, NY

    Chapter  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Borkotoky S, Saravanan V, Jaiswal A, et al. (2013) The Arabidopsis stress responsive gene database. Int J Plant Genom 2013:949564

    Google Scholar 

  • Broughton WJ, Hernández G, Blair M et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brown JW, Shaw PJ, Shaw P, Marshall DF (2005) Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res 33:D633–D636

    Article  CAS  PubMed  Google Scholar 

  • Bülow L, Schindler M, Choi C, Hehl R (2004) PathoPlant: a database on plant-pathogen interactions. In Silico Biol 4(4):529–536

    PubMed  Google Scholar 

  • Castellana NE, Payne SH, Shen Z et al (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Peinado LS, de Castro ML (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–5

    Article  CAS  PubMed  Google Scholar 

  • Chawla K, Barah P, Kuiper M, Bones AM (2011) Systems biology: a promising tool to study abiotic stress responses. Omics Plant Abiotic Stress Tolerance 10:163–172

    Google Scholar 

  • Chen X, Qi X, Duan LX (2015) Overview. In: Plant metabolomics. Springer, Netherlands, p 1–24

    Google Scholar 

  • Coman D, Gruissem W, Hennig L (2013) Transcript profiling in Arabidopsis with genome tiling microarrays. In: Tiling arrays: methods and protocols. Humana Press, Totowa, pp 35–49

    Chapter  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke IR, Jones D, Bowen JK et al (2014) Proteogenomic analysis of the Venturia pirina (Pear Scab Fungus) secretome reveals potential effectors. J Proteome Res 13:3635–3644

    Article  CAS  PubMed  Google Scholar 

  • Cornell M, Paton NW, Hedeler C, Kirby P, Delneri D, Hayes A, Oliver SG (2003) GIMS: an integrated data storage and analysis environment for genomic and functional data. Yeast 20(15):1291–1306

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res 44:D1181–D1188

    Article  CAS  PubMed  Google Scholar 

  • De Cremer K, Mathys J, Vos C et al (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007

    PubMed  Google Scholar 

  • Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Uncovering plant–pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:D354–D359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois A, Carrere S, Raymond O, Pouvreau B, Cottret L, Roccia A, Onesto JP, Sakr S, Atanassova R, Baudino S, Foucher F, Le Bris M, Gouzy J, Bendahmane M (2012) Transcriptome database resource and gene expression atlas for the rose. BMC Genomics 13:638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB, da Silva JM, et al (2013) Abiotic stress—plant responses and applications in agriculture. InTech, Chapter 3, p 40–101

    Google Scholar 

  • Durek P, Schmidt R, Heazlewood JL, Jones A, Maclean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  CAS  PubMed  Google Scholar 

  • Eldem V, Okay S, Ünver T (2013) Plant microRNAs: new players in functional genomics. Turk J Agric For 37:1–21

    CAS  Google Scholar 

  • El-Metwally S, Ouda OM, Helmy M (2014a) Next generation sequencing technologies and challenges in sequence assembly, 1st edn. Springer, ISBN: 978-1-4939-0714-4

    Google Scholar 

  • El-Metwally S, Ouda OM, Helmy M (2014b) First- and next-generations sequencing methods. Next gener seq technol Challenges seq assem. Springer, New York, pp 29–36

    Book  Google Scholar 

  • El-Metwally S, Ouda OM, Helmy M (2014c) New horizons in next-generation sequencing. Next gener seq technol Challenges seq assem. Springer, New York, pp 51–59

    Book  Google Scholar 

  • Ernst M, Silva DB, Silva RR, Vêncio RZ, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31(6):784–806

    Article  CAS  PubMed  Google Scholar 

  • Esposito A, Colantuono C, Ruggieri V, Chiusano ML (2016) Bioinformatics for agriculture in the next-generation sequencing era. Chem Biol Technol Agric 3(1):9

    Article  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16(2):77–88

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2013) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  CAS  PubMed  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M et al (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) Helmy Nucleic Acids Res 37:D960–D962

    Article  CAS  Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Casati DF, Zanor MI, Busi MV (2013) Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases. Biomed Res Int 2013:1–11

    Article  CAS  Google Scholar 

  • Govind G, Harshavardhan VT, Patricia JK et al (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Gen Genomics 281:607

    Article  CAS  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487

    Google Scholar 

  • Griffiths-Jones S, Saini HK, vanDongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D’Eustachio P, Fabregat A et al (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol 8:10–15

    Article  Google Scholar 

  • Gurjar AKS, Singh Panwar A, Gupta R, Mantri SS (2016) PmiRExAt: plant miRNA expression atlas database and web applications. Database 2016:baw060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    Article  CAS  PubMed  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  CAS  PubMed  Google Scholar 

  • Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmy M, Sugiyama N, Tomita M, Ishihama Y (2012a) Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics. Cell Mech 17:633–644

    CAS  Google Scholar 

  • Helmy M, Sugiyama N, Tomita M, Ishihama Y (2012b) The rice proteogenomics database oryza PG-DB: development, expansion, and new features. Front Plant Sci 3:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopff D, Wienkoop S, Lüthje S (2013) The plasma membrane proteome of maize roots grown under low and high iron conditions. J Proteome 91:605–618

    Article  CAS  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    Article  CAS  PubMed  Google Scholar 

  • Hulo N (2006) The PROSITE database. Nucleic Acids Res 34(90001):D227–D230

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka K’i, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M, Kanaya S, Aoki K, Shibata D (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54(5):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL et al (2010) Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayashree B, Crouch JH, Prasad PVNS, Hoising-ton D (2006) A database of annotated tentative orthologs from crop abiotic stress transcripts. Bioinformation 1:225–227

    Google Scholar 

  • Jeong DH, Green PJ (2013) The role of rice microRNAs in abiotic stress responses. J Plant Biol 56:187–197

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah S, Govind SR, Tran L-SP (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33:23–39

    Article  PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteome 72(3):285–314

    Article  CAS  Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2012) Microarray technology. In: Gupta AK, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture: principles and practices. IK International Publishing House Pvt. Ltd., New Delhi, pp 273–296

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Ayers JE, Dewolf ED, Geiser DM, Kuldau G, Moorman GW, Mullins E, Uddin W, Correll JC, Deckert G, Lee YH, Lee YW, Martin FN, Subbarao K (2002) The internet-based fungal pathogen database: a proposed model. Phytopathology 92(3):232–236

    Article  PubMed  Google Scholar 

  • Karp PD, Billington R, Caspi R, Fulcher CA, et al. (2017) The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. https://doi.org/10.1093/bib/bbx085

    Article  PubMed Central  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, Oono Y, Wakimoto H, Ogata J (2016) TENOR: database for comprehensive mRNA-Seq experiments in rice. Plant Cell Physiol 57(1):e7

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Mittenthal JE, Caetano-Anolles G (2006) MANET:tracing evolution of protein architecture in metabolic networks. BMC Bioinforma 7:351

    Article  CAS  Google Scholar 

  • King ZA, Lu JS, Dräger A, Miller PC, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE (2016) BiGG Models: a platform for integrating, standardizing, and sharing genome-scale models. Nucleic Acids Res 44(D1):D515–D522

    Article  CAS  PubMed  Google Scholar 

  • Kinjo AR, Bekker GJ, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, Nakamura H (2017) Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res 45:D282–D288

    Article  CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:e207

    Article  Google Scholar 

  • Koltai H, Volpin H (2003) Agricultural genomics: an approach to plant protection. Eur J Plant Pathol 109:101–108

    Article  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21(8):1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo T, Terashima S, Takaki Y, Tomita K et al (2017) PlantExpress: a database integrating OryzaExpress and ArthaExpress for single-species and cross-species gene expression network analyses with microarray-based transcriptome data. Plant Cell Physiol 58(1):e1

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Kim YK, Pham THM, Song SI et al (2009) Correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151(1):16–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JR, Liu CC, Sun CH, Chen YT (2018) Plant stress RNA-seq nexus: a stress-specific transcriptome database in plant cells. BMC Genomics 19:966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang N, Zhao S et al (2015) Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato. Plant Physiol Biochem 86:181–190

    Article  CAS  PubMed  Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:1

    Article  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150(4):1972–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoudi-Nejad A, Goto S, Jauregui R et al (2007) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144(2):857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57(3):555–577

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B et al (2013) Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS One 8(2):e55913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy FM, Wang N, Bryce Magee G, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Paul Williams W, Luthe DS, Bridges SM, Burgess SC (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7(1):229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404

    Article  PubMed  Google Scholar 

  • Mine A, Sato M, Tsuda K (2014) Toward a systems understanding of plant–microbe interactions. Front Plant Sci 5:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir S, Alhroub Y, Anyango S, Armstrong DR, Berrisford JM, Clark AR et al (2018) PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res 46:D486–D492

    Article  CAS  PubMed  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi SA, Pouya FM, Ghaffari MR, Mirzaei M, Ghaffari A, Alikhani M, Ghareyazie M, Komatsu S, Haynes PA, Salekdeh GH (2016) PlantPReS: a database for plant proteome response to stress. J Proteome 143:69–72

    Article  CAS  Google Scholar 

  • Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253

    Article  CAS  PubMed  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  • Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:1–15

    Article  CAS  Google Scholar 

  • Nakagami H, Sugiyama N, Ishihama Y, Shirasu K (2012) Shotguns in the front line: phosphoproteomics in plants. Plant Cell Physiol 53:118–124

    Article  CAS  PubMed  Google Scholar 

  • Nakaya A, Ichihara H, Asamizu E, Shirasawa S, Nakamura Y, Tabata S, Hirakawa H (2017) Plant genomics databases. Methods in molecular biology, vol 1533. Humana Press, New York, pp 45–77

    Book  Google Scholar 

  • Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 10:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Lyon GD, Marshall B (2002) DRASTIC: a database resource for analysis of signal transduction in cells. BSPP Newsl 42:36–37

    Google Scholar 

  • Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genomics 13:S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR (2018) PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res 46:D1197–D1201

    Article  CAS  PubMed  Google Scholar 

  • Pearson W (2004) Finding protein and nucleotide similarities with FASTA. Curr Protoc Bioinforma Chapter 3:Unit3.9

    Google Scholar 

  • Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C (2008) WikiPathways: pathway editing for the people. PLoS Biol 6(7):e184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabha R, Ghosh I, Singh DP (2011) Plant stress gene database: a collection of plant genes responding to stress condition. ARPN J Sci Tech 1(1):28–31

    Google Scholar 

  • Priya P, Jain M (2013) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. J Database Curation Bat027:1–7

    Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Remita AM, Lord E, Agharbaoui Z, Leclercq M et al (2016) WMP: a novel comprehensive wheat miRNA database, including related bioinformatics software. Curr Plant Biol 7(8):31–33

    Article  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224

    Article  CAS  PubMed  Google Scholar 

  • Rocha I, Förster J, Nielsen J (2008) Design and application of genome-scale reconstructed metabolic models. Microbi Gene Essentiality: Protoc Bioinforma 416:409–431

    CAS  Google Scholar 

  • Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH et al (2017) The RCSB protein data Bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45:D271–D281

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Satou M, Akiyama K, Iida K, Seki M, Kuromori T et al (2005) RARGE: a large-scale database of RIKEN Arabidopsis resources ranging from transcriptome to phenome. Nucl Acids Res 33:D647–D650

    Article  PubMed  Google Scholar 

  • Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. NucleicAcids Res 39:D670–D676

    Article  CAS  Google Scholar 

  • Schulze S, Henkel SG, Driesch D, Guthke R, Linde J (2015) Computational prediction of molecular pathogen–host interactions based on dual transcriptome data. Front Microbiol 6:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Gill T, Sreenivasulu Y, Kumar S, Ahuja PS, Singh AK (2015a) Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma 252:41–51

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015b) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, Ahuja PS, Singh AK (2017) Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol Biol Rep 35:504–518

    Article  CAS  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB-Arabidopsis stress responsive transcription factor dataBase. Int J Plant Genomics 2009:583429

    Google Scholar 

  • Shankar A, Singh A, Kanwar P et al (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8:e70321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Singh AK, Chand R, Kushwaha C (2011) Role of bioinformatics in agriculture and sustainable development. Int J Bioinform Res 3(2):221–226

    Article  Google Scholar 

  • Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59(3):413–428

    Article  CAS  Google Scholar 

  • Smita S, Lenka SK, Katiyar A, Jaiswal P, Preece J, Bansal KC (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database 1:1–9

    Google Scholar 

  • Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant-Microbe Interact 15(5):421–427

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ueno Y, Naraoka H et al (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Dangl J (2000) Genomics. Plant biology in 2010. Science 290:2077–2078

    Article  CAS  PubMed  Google Scholar 

  • Spannagl M, Nussbaumer T, Bader KC, Martis MM, Seidel M, Kugler KG, Gundlach H, Mayer KFX (2016) PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 44:D1141–D1147

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P et al (2008) The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    Article  PubMed  Google Scholar 

  • Tripathi A, Goswami K, Mishra NS (2015) Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 26:286

    Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Nakamura Y, Kobayashi M, Terashima S (2018) TodoFirGene: developing transcriptome resources for genetic analysis of Abies sachalinensis. Plant Cell Physiol 59(6):1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K (2017) A guide to the PLAZA 3.0 plant comparative genomic database. Plant genomics databases. Methods Mol Biol 1533. Humana Press, New York:183–200

    Article  CAS  PubMed  Google Scholar 

  • Vassilev D, Leunissen JA, Atanassov A, Nenov A, Dimov G (2005) Application of bioinformatics in plant breeding. Wageningen University, Netherland

    Book  Google Scholar 

  • Vassilev D, Nenov A, Atanassov A, Dimov G, Getov L (2006) Application of bioinformatics infruit plant breeding. J Fruit Ornamental Plant Res 14:145–162

    CAS  Google Scholar 

  • Verma M, Kumar V, Patel RK, Garg R, Jain M (2015) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS One 10:0136880

    Google Scholar 

  • Wanchana SS, Thongjuea VJ, Ulat M, Anacleto R, Mauleon M, Conte M, Rouard M, Wang B, Sun YF, Song N, Wei JP, Wang XJ et al (2018) MicroRNAs involving in cold, wounding and salt stresses in Triticumaestivum L., Plant Physiology and Biochemistry In press. Nucleic Acids Res 36:D943–D946

    Article  CAS  Google Scholar 

  • Wang B, Sun YF, Song N, Wei JP, Wang XJ et al (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96

    Article  CAS  PubMed  Google Scholar 

  • Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE (2006) Nucleic Acids Res 34:D459–D464

    Article  CAS  PubMed  Google Scholar 

  • Wojciech M, Karlowski, Schoof H, Janakiraman V, Stuempflen V, Mayer KFX (2003) MOsDB: an integrated information resource for rice genomics. Nucleic Acids Res 31(1):190–192

    Article  CAS  Google Scholar 

  • Yan S, Du X, Wu F et al (2014) Proteomics insights into the basis of interspecific facilitation formaize (Zea mays) in faba bean (Vicia faba)/maize intercropping. J Proteome 109:111–124

    Article  CAS  Google Scholar 

  • Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S et al (2002) A draft sequence of rice genome. Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr (2008) Plant systems biology comes of age. Trends Plant Sci 13:165–171

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, Shang Guan M, Wei C (2013) PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13:1–8

    Article  CAS  Google Scholar 

  • Zhang M, Lv D, Ge P et al (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteome 109:290–308

    Article  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M et al (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafi, A., Zahoor, I. (2019). Bioinformatics and Plant Stress Management. In: Hakeem, K., Shaik, N., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume III. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_3

Download citation

Publish with us

Policies and ethics