Skip to main content

Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is \(O(\sqrt{\hat{n}m}\log \hat{n})\), and the running time of the best known deterministic algorithm is \(O(n+m)\), where n is the number of vertices, \(\hat{n}\) is the number of vertices with at least one outgoing edge; m is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablayev, F., Ablayev, M., Khadiev, K., Vasiliev, A.: Classical and quantum computations with restricted memory. In: Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 129–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_9

    Chapter  Google Scholar 

  2. Ablayev, F., Ambainis, A., Khadiev, K., Khadieva, A.: Lower bounds and hierarchies for quantum memoryless communication protocols and quantum ordered binary decision diagrams with repeated test. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 197–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_14

    Chapter  Google Scholar 

  3. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6_6

    Chapter  Google Scholar 

  5. Ablayev, F., Vasilyev, A.: On quantum realisation of boolean functions by the fingerprinting technique. Discrete Math. Appl. 19(6), 555–572 (2009)

    Article  MathSciNet  Google Scholar 

  6. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. Theoret. Comput. Sci. 410(20), 1916–1922 (2009)

    Article  MathSciNet  Google Scholar 

  7. Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating NAND formulas. arXiv preprint arXiv:0704.3628 (2007)

  8. Ambainis, A.: Quantum algorithms for formula evaluation. https://arxiv.org/abs/1006.3651 (2010)

  9. Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv preprint arXiv:1712.06349 (2017)

  10. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any and-or formula of size N can be evaluated in time \(N^{1/2}+o(1)\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ambainis, A., Špalek, R.: Quantum algorithms for matching and network flows. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 172–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_13

    Chapter  Google Scholar 

  12. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  13. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  14. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  15. Bun, M., Kothari, R., Thaler, J.: Quantum algorithms and approximating polynomials for composed functions with shared inputs. arXiv preprint arXiv:1809.02254 (2018)

  16. Childs, A.M., Kimmel, S., Kothari, R.: The quantum query complexity of read-many formulas. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 337–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_30

    Chapter  Google Scholar 

  17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  18. De Wolf, R.: Quantum computing and communication complexity (2001)

    Google Scholar 

  19. Dörn, S.: Quantum complexity of graph and algebraic problems. Ph.D. thesis, Universität Ulm (2008)

    Google Scholar 

  20. Dörn, S.: Quantum algorithms for matching problems. Theory Comput. Syst. 45(3), 613–628 (2009)

    Article  MathSciNet  Google Scholar 

  21. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 481–493. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_42

    Chapter  Google Scholar 

  22. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)

    Article  MathSciNet  Google Scholar 

  23. Durr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv preprint arXiv:quant-ph/9607014 (1996)

  24. Gindikin, S.G., Gindikin, S., Gindikin, S.G.: Algebraic Logic. Springer, New York (1985)

    Book  Google Scholar 

  25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  26. Grover, L.K., Radhakrishnan, J.: Is partial quantum search of a database any easier? In: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 186–194. ACM (2005)

    Google Scholar 

  27. Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary, and probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_15

    Chapter  Google Scholar 

  28. Jordan, S.: Bounded Error Quantum Algorithms Zoo. https://math.nist.gov/quantum/zoo

  29. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_16

    Chapter  MATH  Google Scholar 

  30. Khadiev, K., Khadieva, A., Mannapov, I.: Quantum online algorithms with respect to space and advice complexity. Lobachevskii J. Math. 39(9), 1210–1220 (2018)

    Article  MathSciNet  Google Scholar 

  31. Le Gall, F.: Exponential separation of quantum and classical online space complexity. Theory Comput. Syst. 45(2), 188–202 (2009)

    Article  MathSciNet  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  33. Yablonsky, S.V.: Introduction to Discrete Mathematics: Textbook for Higher Schools. Mir Publishers, Moscow (1989)

    Google Scholar 

  34. Zhegalkin, I.: On the technique of calculating propositions in symbolic logic (sur le calcul des propositions dans la logique symbolique). Matematicheskii Sbornik 34(1), 9–28 (1927). (in Russian and French)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation Grant 17-71-10152.

A part of work was done when K. Khadiev visited University of Latvia. We thank Andris Ambainis, Alexander Rivosh and Aliya Khadieva for help and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Khadiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khadiev, K., Safina, L. (2019). Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics