Skip to main content

Computational Limitations of Affine Automata

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Abstract

We present two new results on the computational limitations of affine automata. First, we show that the computation of bounded-error rational-valued affine automata is simulated in logarithmic space. Second, we give an impossibility result for algebraic-valued affine automata. As a result, we identify some unary languages (in logarithmic space) that are not recognized by algebraic-valued affine automata with cutpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is known that \(\mathsf {L}\subsetneq \mathsf {PSPACE}\), so it is plausible that \(\mathsf {PSPACE}\)-complete languages are not in \(\mathsf {AfL}_{\mathbb {Q}}\).

  2. 2.

    Note that the new matrix obtained may not be affine, so it would be wrong to assume that all AfAs have to admit an equivalent one with only irrational eigenvalues. However, this does not affect this proof, since we do not require the new matrix to be affine, we only study the values that the fraction \(\frac{\left| P(\alpha M)^n\varvec{v}\right| }{\left| (\alpha M)^n\varvec{v}\right| } =\frac{\left| PM^n\varvec{v}\right| }{\left| M^n\varvec{v}\right| }\) take.

  3. 3.

    This is the only point we need the assumption that the matrix entries are algebraic.

References

  1. Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39(1), 165–188 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. CoRR, abs/1507.0:1–32 (2015)

    Google Scholar 

  3. Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_11

    Chapter  MATH  Google Scholar 

  4. Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Math. 53(2), 225–244 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Hansel, G.: A simple proof of the Skolem-Mahler-Lech theorem. Theoret. Comput. Sci. 43(1), 91–98 (1986)

    Article  MathSciNet  Google Scholar 

  6. Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_30

    Chapter  MATH  Google Scholar 

  7. Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-free affine, unitary, and probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_15

    Chapter  Google Scholar 

  8. Jeandel, E.: Topological automata. Theory Comput. Syst. 40(4), 397–407 (2007)

    Article  MathSciNet  Google Scholar 

  9. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE (1997)

    Google Scholar 

  10. Macarie, I.I.: Space-efficient deterministic simulation of probabilistic automata. SIAM J. Comput. 27(2), 448–465 (1998)

    Article  MathSciNet  Google Scholar 

  11. Yakaryılmaz, A., Cem Say, A.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Paz, A.: Introduction to Probabilistic Automata (Computer Science and Applied Mathematics). Academic Press Inc., Orlando (1971)

    Google Scholar 

  13. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)

    Article  Google Scholar 

  14. Sipser, M.: Introduction to the Theory of Computation, 1st edn. International Thomson Publishing, Stamford (1996)

    MATH  Google Scholar 

  15. Turakainen, P.: On Probabilistic Automata and their Generalizations. Annales Academiae Scientiarum Fennicae. Series A 429 (1969)

    Google Scholar 

  16. Turakainen, P.: Generalized automata and stochastic languages. Proc. Am. Math. Soc. 21(2), 303–309 (1969)

    Article  MathSciNet  Google Scholar 

  17. Turakainen, P.: On nonstochastic languages and homomorphic images of stochastic languages. Inf. Sci. 24(3), 229–253 (1981)

    Article  MathSciNet  Google Scholar 

  18. Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_10

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

Yakaryılmaz was partially supported by Akadēmiskā personāla atjaunotne un kompetenču pilnveide Latvijaspilnveide Latvijas Universitātē līg Nr. 8.2.2.0/18/A/010 LU Nr. ESS2018/289 and ERC Advanced Grant MQC. Hirvensalo was partially supported by the Väisälä Foundation and Moutot by ANR project CoCoGro (ANR-16-CE40-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Hirvensalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirvensalo, M., Moutot, E., Yakaryılmaz, A. (2019). Computational Limitations of Affine Automata. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics