Skip to main content

The Swiss National Forest Inventory Data Analysis System

  • Chapter
  • First Online:
Book cover Swiss National Forest Inventory – Methods and Models of the Fourth Assessment

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 35))

  • 766 Accesses

Abstract

The NAtional Forest Inventory Data Analysis System (NAFIDAS) is a multitier application to store and analyse Swiss National Forest Inventory (NFI) data. It provides a basis to publish findings about the current state and development of the Swiss forest on a regional and national level. The system supports the complete chain of data processing of a sample-based forest inventory, starting with the upload of field data and ending with the publication of tables and maps on the Internet. It also provides the necessary tools for administering and maintaining the system and offers access to lists of variables, derivations and dependencies, as well as to documentation of code and production processes. NAFIDAS creates concise result tables and maps with reproducible statistics on NFI data including standard errors and allows the publication of multilingual results based on the most recent NFI data. The efficient long-term storage facilities of raw and derived inventory data form the backbone of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To limit the amount of programming and testing for using the internal web application, only the Firefox Browser on the desktop is supported.

  2. 2.

    (Wikipedia 2018).

  3. 3.

    Splitting into subunits is carried out only during analysis, i.e. after sampling.

  4. 4.

    The two inventory occasions under consideration.

References

  • FAO (2015) Global forest resources assessment 2015 desk reference. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fielding RT (2000) Architectural styles and the design of network-based software architectures. Doctoral Thesis, University of California

    Google Scholar 

  • FOEN (2016) Switzerland’s Greenhouse Gas Inventory 1990–2014. National Inventory Report including reporting elements under the Kyoto Protocol. Federal Office for the Environment FOEN, Climate Division, Bern

    Google Scholar 

  • FOREST EUROPE (2015) State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe, Forest Europe, Liaison Unit Madrid, Madrid. Spain

    Google Scholar 

  • Ginzler C, Hobi ML (2015) Countrywide stereo-image matching for updating digital surface models in the framework of the Swiss National Forest Inventory. Remote Sens 7(4):4343–4370. https://doi.org/10.3390/rs70404343

    Article  Google Scholar 

  • Köhl M (2001) Inventory concept NFI2. In: Brassel P, Lischke HS (eds), Swiss national forest inventory: methods and models of the second assessment. Eidg. Forschungsanstalt WSL, Birmensdorf, pp. 19–44

    Google Scholar 

  • Lanz A (2017) Forest inventory estimation. Unpublished report, WSL, Birmensdorf

    Google Scholar 

  • Laplante PA (2007) What every engineer should know about software engineering, vol 40, 1st edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • McDowall RD (2005) Effective and practical risk management options for computerised system validation. Qual Assur J 9:196–227. https://doi.org/10.1002/qaj.339

    Article  Google Scholar 

  • Pulkkinen M, Ginzler C, Traub B, Lanz A (2018) Stereo-imagery-based post-stratification by regression-tree modelling in Swiss National Forest Inventory. Remote Sens Environ 213:182–194. https://doi.org/10.1016/j.rse.2018.04.052

    Article  Google Scholar 

  • Thulasiraman K, Swamy MNS (1992) Directed graphs. In: Graphs: theory and algorithms. Wiley, pp 97–125. https://doi.org/10.1002/9781118033104.ch5

  • Traub B, Meile R, Speich S, Rösler E (2017) The data storage and analysis system of the Swiss National Forest Inventory. Comput Electron Agric 132:97–107. https://doi.org/10.1016/j.compag.2016.11.016

    Article  Google Scholar 

  • Waser LT, Fischer C, Wang ZY, Ginzler C (2015) Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests 6(12):4510–4528. https://doi.org/10.3390/f6124386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Traub .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Parameterisation of Data Analysis

On the first parameterisation page, the parameters type of analysis, inventory period(s), target variable , sampling grid(s) and reference domain are determined by the user (Fig. 20.3). Valid combinations are queried from an administrative database table, which has to be maintained manually.

On the following page, one to three classification units can be selected. Which of these is valid depends not only on the parameters already selected but also, in particular, on the hierarchy of the database tables the target variable is stored in. In some cases, a specific classification unit is also mandatory. Furthermore, if the difference between two inventories is to be analysed, only classification units are considered where the lookup values are the same.

On the third page, the method of double sampling stratification can be selected, as well as the reference unit , which depends on the type of analysis and the inventory period. The user can select a second target variable and other optional parameters, such as the number of decimal places. The choice of the second target variable has to follow certain rules because not every kind of ratio makes sense or is even valid (Table 20.7).

Table 20.7 Enhanced information on the DAA parameter (minimum set required). IDs refer to a derivation variable (column in an analysis table). Further information about the parameters based on derivation is given in Table 20.3

1.2 Equations for Point Estimators and Standard Errors

All DAA equations and explanations are taken from Lanz (2017, Chap. 7), with double sampling for stratification under simple random sampling, with stratified sampling of first-phase plots.

General Equations

  1. (96)

    \( \hat{Y}={\lambda}_F^{-1}{\sum}_{k=1}^L{\lambda}_k{\hat{Y}}_k \)

  2. (97)

    \( \hat{\mathit{\operatorname{var}}}\left\langle \hat{Y}\right\rangle ={\lambda}_F^{-2}{\sum}_{k=1}^L{\lambda}_k^2\hat{\mathit{\operatorname{var}}}\left\langle {\hat{Y}}_k\right\rangle \)

  3. (98)

    \( {\hat{Y}}_k={\dot{n}}_k^{-1}{\sum}_{k.e=1}^H{\dot{n}}_{k.e}{\hat{Y}}_{k.e} \)

  4. (99)

    \( {\hat{Y}}_{k.e}={\ddot{n}}_{k.e}^{-1}\sum \limits_{j\in {\ddot{S}}_{k.e}}{y}_j \)

  5. (100)

    \( \hat{\mathit{\operatorname{var}}}\left\langle {\hat{Y}}_k\right\rangle ={\dot{n}}_k^{-1}{\left({\dot{n}}_k-1\right)}^{-1}\left[{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}\left({\dot{n}}_{k.e}-1\right){\ddot{n}}_{k.e}^{-1}{\hat{\sigma}}_{k.e}^2\left\langle y\right\rangle +{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\left({\hat{Y}}_{k.e}-{\hat{Y}}_k\right)}^2\right] \)

  6. (101)

    \( {\hat{\sigma}}_{k.e}^2\left\langle y\right\rangle ={\left({\ddot{n}}_{k.e}-1\right)}^{-1}\sum \limits_{j\epsilon {\ddot{S}}_{k.e}}{\left({y}_j-{\overline{y}}_{k.e}\right)}^2 \) with \( {\overline{y}}_{k.e}={\hat{Y}}_{k.e} \)

  7. (103)

    \( \hat{R}={\hat{Y}}_X{\hat{Y}}_Z^{-1} \)

  • (104a) \( =\left({\lambda}_F^{-1}{\sum}_{k=1}^L{\lambda}_k{\hat{Y}}_{X.k}\right){\left({\lambda}_F^{-1}{\sum}_{k=1}^L{\lambda}_k{\hat{Y}}_{Z.k}\right)}^{-1} \)

  1. (104b)

    \( =\left({\sum}_{k=1}^L{\lambda}_k{\hat{Y}}_{X.k}\right){\left({\sum}_{k=1}^L{\lambda}_k{\hat{Y}}_{Z.k}\right)}^{-1} \) (which corresponds to \( {\hat{R}}_k \)if L = 1)

  1. (105)

    \( \hat{\mathit{\operatorname{var}}}\left\langle \hat{R}\right\rangle ={\hat{Y}}_Z^{-2}{\lambda}_F^{-2}{\sum}_{k=1}^L{\lambda}_k^2\hat{\mathit{\operatorname{var}}}\left\langle {\hat{U}}_k\right\rangle \)

  2. (106)

    \( {\hat{Y}}_{X.k}={\dot{n}}_k^{-1}{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\hat{Y}}_{X.k.e} \)

  3. (107)

    \( {\hat{Y}}_{Z.k}={\dot{n}}_k^{-1}{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\hat{Y}}_{Z.k.e} \)

  4. (108)

    \( {\hat{Y}}_{X.k.e}={\ddot{n}}_{k.e}^{-1}\sum \limits_{j\in {\ddot{S}}_{k.e}}{x}_j \)

  5. (109)

    \( {\hat{Y}}_{Z.k.e}={\ddot{n}}_{k.e}^{-1}\sum \limits_{j\in {\ddot{S}}_{k.e}}{z}_j \)

  6. (110)

    \( \hat{\mathit{\operatorname{var}}}\left\langle {\hat{U}}_k\right\rangle ={\dot{n}}_k^{-1}{\left({\dot{n}}_k-1\right)}^{-1}\left[{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}\left({\dot{n}}_{k.e}-1\right){\ddot{n}}_{k.e}^{-1}{\hat{\sigma}}_{k.e}^2\left\langle u\right\rangle +{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\left({\hat{U}}_{k.e}-{\hat{U}}_k\right)}^2\right] \)

  7. (111)

    \( {\hat{U}}_{k.e}={\ddot{n}}_{k.e}^{-1}\sum \limits_{j\in {\ddot{S}}_{k.e}}{u}_j \)

  8. (112)

    \( {\hat{U}}_k={\dot{n}}_k^{-1}{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\hat{U}}_{k.e} \)

  9. (113)

    \( {\hat{\sigma}}_{k.e}^2\left\langle u\right\rangle ={\left({\ddot{n}}_{k.e}-1\right)}^{-1}\sum \limits_{j\epsilon {\ddot{S}}_{k.e}}{\left({u}_j-{\overline{u}}_{k.e}\right)}^2 \)

  10. (114)

    \( {u}_j={x}_j-{z}_j\ {\hat{R}}_k \)

  11. (115)

    \( {\overline{u}}_{k.e}={\ddot{n}}_{k.e}^{-1}\sum \limits_{j\in {\ddot{S}}_{k.e}}{u}_j \) with \( {\overline{u}}_{k.e}={\hat{U}}_{k.e} \) and, in general, \( {\overline{u}}_{k.e}\ne 0 \)

Variation Between Sampling Units

All variance estimators contain a term \( {\left(n-1\right)}^{-1}{\sum}_{j=1}^n{\left({u}_j-\overline{u}\right)}^2 \). For the variance of a mean, one finds uj = yj and \( \overline{u}=\hat{Y} \) (with \( \hat{Y}\ne 0 \)), the sum term of the variance can be written as:

  1. (146)

    \( {\sum}_{j=1}^n{\left({u}_j-\overline{u}\right)}^2\dot{=}{\sum}_{j=1}^n{\left({y}_j-\hat{Y}\right)}^2={\sum}_{j=1}^n{y}_j^2-{n}^{-1}{\left({\sum}_{j=1}^n{y}_j\right)}^2 \)

For the variance of a ratio, uj needs to be pre-calculated at the plot level. Alternatively, the variance terms can be expressed as a function of the original local densities Yx and Yz. Then \( {u}_j={x}_j-{z}_j\hat{R} \), \( \overline{u}\ne 0 \) because \( \hat{R} \) is the global ratio. The sum term of the variance of a ratio of means estimator can then be written as:

  1. (148)

    \( {\sum}_{j=1}^n{\left({u}_j-\overline{u}\right)}^2\dot{=}{\sum}_{j=1}^n{\left(\left({x}_j-{z}_j\hat{R}\right)-\left({n}^{-1}{\sum}_{j=1}^n\left({x}_j-{z}_j\hat{R}\right)\right)\right)}^2= \)

  • \( \left({\sum}_{j=1}^n{x}_j^2-{n}^{-1}{\left({\sum}_{j=1}^n{x}_j\right)}^2\right)-2\hat{R}\left({\sum}_{j=1}^n{x}_j{z}_j-{n}^{-1}\left({\sum}_{j=1}^n{x}_j\right)\left({\sum}_{j=1}^n{z}_j\right)\right) \)

  • \( +{\hat{R}}^2\left({\sum}_{j=1}^n{z}_j^2-{n}^{-1}{\left({\sum}_{j=1}^n{z}_j\right)}^2\right) \)

Variation Between Double Sampling Strata

Under two-phase sampling schemes, the variance estimators contain a term in the form \( {\sum}_{e=1}^H{\alpha}_e{\left({\hat{U}}_e-\hat{U}\right)}^2 \). A shorthand computation of the term is:

  1. (152)

    \( {\sum}_{e=1}^H{\alpha}_e\ {\left({\hat{U}}_e-\hat{U}\right)}^2=\left({\sum}_{e=1}^H{\alpha}_e{\hat{U}}_e^2\right)-{\hat{U}}^2{\sum}_{e=1}^H{\alpha}_e \)

because \( {\sum}_{e=1}^H{\alpha}_e{\hat{U}}_e=\hat{U}{\sum}_{e=1}^H{\alpha}_e \).

Under single-plot double sampling with stratified sampling of first-phase sample plots, \( {\alpha}_e={\dot{n}}_{k.e} \) and \( {\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e}{\hat{Y}}_{k.e}={\hat{Y}}_k{\sum}_{k.e=1}^{k.H}{\dot{n}}_{k.e} \)

The sum term can then be written as:

  1. (155)

    \( {\sum}_{e=1}^H{\alpha}_e{\left({\hat{U}}_e-\hat{U}\right)}^2\dot{=}{\sum}_{e=1}^H{\dot{n}}_e{\left({\ddot{n}}_e^{-1}\sum \limits_{j\in {\ddot{S}}_{e.j}}{x}_j\right)}^2-{\dot{n}}^{-1}{\left(\sum \limits_{e=1}^H{\dot{n}}_e\left({\ddot{n}}_e^{-1}\sum \limits_{j\in {\ddot{S}}_{e.j}}{x}_j\right)\right)}^2 \)

  • \( +{\hat{R}}^2\left\{\sum \limits_{e=1}^H{\dot{n}}_e{\left({\ddot{n}}_e^{-1}\sum \limits_{j\in {\ddot{S}}_{e.j}}{z}_j\right)}^2-{\dot{n}}^{-1}{\left({\sum}_{e=1}^H{\dot{n}}_e\left({\ddot{n}}_e^{-1}{\sum}_{j\in {\ddot{S}}_{e.j}}{z}_j\right)\right)}^2\right\} \)

  • \( -2\hat{R}\left\{{\sum}_{e=1}^H{\dot{n}}_e\left({\ddot{n}}_e^{-1}{\sum}_{j\in {\ddot{S}}_{e.j}}{x}_j\right)\left({\ddot{n}}_e^{-1}{\sum}_{j\in {\ddot{S}}_{e.j}}{z}_j\right)-{\dot{n}}^{-1}\left[\left({\sum}_{e=1}^H{\dot{n}}_e\left({\ddot{n}}_e^{-1}{\sum}_{j\in {\ddot{S}}_{e.j}}{x}_j\right)\right)\left({\sum}_{e=1}^H{\dot{n}}_e\left({\ddot{n}}_e^{-1}{\sum}_{j\in {\ddot{S}}_{e.j}}{z}_j\right)\right)\right]\right\} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Traub, B., Meile, R., Speich, S., Rösler, E. (2019). The Swiss National Forest Inventory Data Analysis System. In: Fischer, C., Traub, B. (eds) Swiss National Forest Inventory – Methods and Models of the Fourth Assessment. Managing Forest Ecosystems, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-19293-8_20

Download citation

Publish with us

Policies and ethics