Oral Cancer

  • Diana Messadi
  • Anh D. Le
  • Takako Tanaka
  • Petra Wilder-SmithEmail author


Because the clinical appearance of oral mucosal lesions is not an adequate indicator of their diagnosis, status or risk level, additional means of assessing these lesions are needed to ensure accurate and early detection, diagnosis, treatment planning, and execution, as well as monitoring. Early diagnosis is the most important determinant of oral cancer outcomes, yet the majority of oral cancers are detected late, when outcomes are poor. This chapter addresses emerging optical imaging modalities for evaluating oral soft tissue conditions such as dysplasia and malignancy. Desirable attributes include: providing clinical decision-making guidance to improve outcomes, ease and speed of use, appropriate cost for the indicated setting, safety (absence of ionizing radiation), patient-friendly probes, and reliability. In this chapter, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging oral tissues, and their potential usefulness as a tool in the diagnosis of oral cancer and potentially premalignant lesions are reviewed.


Optical Diagnosis Oral Cancer Dysplasia Imaging 


  1. 1.
    Control of oral cancer in developing countries. A WHO meeting. Bull World Health Organ. 1984;62(6):817–30.Google Scholar
  2. 2.
  3. 3.
    Ries LA, Eisner MP, Kosary CL, et al., editors. SEER cancer statistics review, 1975–2002. Bethesda: National Cancer Institute; 2005. Scholar
  4. 4.
    Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Amagasa T. Oral premalignant lesions. Int J Clin Oncol. 2011;16(1):1–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Mortazavi H, Baharvand M, Mehdipour M. Oral potentially malignant disorders: an overview of more than 20 entities. J Dent Res Dent Clin Dent Prospects. 2014;8(1):6–14.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Silverman S Jr, Gorsky M, Lozada F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984;53(3):563–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Axell T, Pindborg JJ, Smith CJ, van der Waal I. Oral white lesions with special reference to precancerous and tobacco-related lesions: conclusions of an international symposium held in Uppsala, Sweden, May 18-21 1994. J Oral Pathol Med. 1996;25:49–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaugars GE, Burns JC, Gunsolley JC. Epithelial dysplasia of the oral cavity and lips. Cancer. 1988;62:2166–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Agarwal AK, Sethi A, Sareen D, Dhingra S. Treatment delay in oral and oropharyngeal cancer in our population: the role of socio-economic factors and health-seeking behaviour. Indian J Otolaryngol Head Neck Surg. 2011;63:145–50.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
  12. 12.
    McGurk M, Chan C, Jones J, O’Regan E, Sherriff M. Delay in diagnosis and its effect on outcome in head and neck cancer. Br J Oral Maxillofac Surg. 2005;43(4):281–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Dolan RW, Vaughan CW, Fuleihan N. Symptoms in early head and neck cancer: an inadequate indicator. Otolaryngol Head Neck Surg. 1998;119(5):463–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Vernham GA, Crowther JA. Head and neck carcinoma: stage at presentation. Clin Otolaryngol Allied Sci. 1994;19(2):120–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Yao M, Epstein JB, Modi BJ, Pytynia KB, Mundt AJ, Feldman LE. Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol. 2007;43:213–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin. 2002;52:195–215.PubMedCrossRefGoogle Scholar
  17. 17.
    Ford PJ, Farah CS. Early detection and diagnosis of oral cancer: strategies for improvement. J Cancer Policy. 2013;1:e2–7.CrossRefGoogle Scholar
  18. 18.
    Farmer P, Frenk J, Knaul FM, et al. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet. 2010;376:1186–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Petersen PE. The world Oral health report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral health Programme. Community Dent Oral Epidemiol. 2003;31(1):3–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakulasuriya S. Public awareness of oral cancer, of oral potentially malignant disorders and of their risk factors in some rural populations in Sri Lanka. Community Dent Oral Epidemiol. 2010;38:540–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Paderni C, Compilato D, Carinci F, Nardi G, Rodolico V, Lo Muzio L. Direct visualization of oral-cavity tissue fluorescence as novel aid for early oral cancer diagnosis and potentially malignant disorders monitoring. Int J Immunopathol Pharmacol. 2011;24(2 Suppl):121–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Betz CS, Stepp H, Janda P, Arbogast S, Grevers G, Baumgartner R. A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int J Cancer. 2002;97:245–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharwani A, Jerjes W, Salih V, MacRobert AJ, El-Maaytah M, Khalil HS, Hopper CJ. Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. J Photochem Photobiol B. 2006;83(1):27–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Lane PM, Gilhuly T, Whitehead P, Zeng H, Poh CF, Ng S, Williams PM, Zhang L, Rosin MP, MacAulay CE. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.PubMedCrossRefGoogle Scholar
  26. 26.
    Hanken H, Kraatz J, Smeets R, Heiland M, Assaf AT, Blessmann M. The detection of oral pre malignant lesions with an autofluorescence based imaging system (VELscope TM)—A single blinded clinical evaluation. Head Face Med. 2013;9:23.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Koch FP, Kaemmerer PW, Biestergeld S, Kunkel M, Wagner W. Effectiveness of autofluorescence to identify suspicious oral lesions—a prospective, blinded clinical trial. Clin Oral Investig. 2011;15:975–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Rana M, Zapf A, Kuehle M, Gellrich NS, Eckardt AM. Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: a prospective randomized diagnostic study. Eur J Cancer Prev. 2012;21:460–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Marzouki HZ, Tuong Vi Vu T, Ywakim R, Chauvin P, Hanley J, Kost KM. Use of fluorescent light in detecting malignant and premalignant lesions in the oral cavity: a prospective, single-blind study. J Otolaryngol Head Neck Surg. 2012;41(3):164–8.PubMedGoogle Scholar
  30. 30.
    McNamara KK, Martin BD, Evans EW, Kalmar JR. The role of direct visual fluorescent examination (VELscope) in routine screening for potentially malignant oral mucosal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(5):636–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Babiuch K, Chomyszyn-Gajewska M, Wyszyńska-Pawelec G. Use of VELscope for detection of oral potentially malignant disorders and cancers. Med Biol Sci. 2012;26:11–6.Google Scholar
  32. 32.
    Mehrotra R, Singh M, Thomas S, Nair P, Pandya S, Nigam NS, Shukla P. A cross-sectional study evaluating chemiluminescence and autofluorescence in the detection of clinically innocuous precancerous and cancerous oral lesions. J Am Dent Assoc. 2010;141(2):151–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanken H, Kraatz J, Smeets R, Heiland M, Assaf AT, Blessmann M, Eichhorn W, Clauditz TS, Gröbe A, Kolk A, Rana M. The detection of oral pre- malignant lesions with an autofluorescence based imaging system (VELscope™)—a single blinded clinical evaluation. Head Face Med. 2013;9:23.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Patton LL, Epstein JB, Kerr AR. Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J Am Dent Assoc. 2008;139:896–905.PubMedCrossRefGoogle Scholar
  35. 35.
    De Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 2005;41:117–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Onizawa K, Saginoya H, Furuya Y, Yoshida H. Fluorescence photography as a diagnostic method for oral cancer. Cancer Lett. 1996;108:61–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Schantz SP, Kolli V, Savage HE, Yu G, Shah JP, Harris DE, Katz A, Alfano RR, Huvos AG. In vivo native cellular fluorescence and histological characteristics of head and neck cancer. Clin Cancer Res. 1998;4:1177–82.PubMedGoogle Scholar
  38. 38.
  39. 39.
    Yu B, Shah A, Nagarajan VK, Ferris DG. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed Opt Express. 2014;5(3):675–89.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schwarz RA, Gao W, Redden Weber C, Kurachi C, Lee JJ, El-Naggar AK, Richards-Kortum R, Gillenwater AM. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer. 2009;115(8):1669–79.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    McGee S, Mirkovic J, Mardirossian V, Elackattu A, Yu CC, Kabani S, Gallagher G, Pistey R, Galindo L, Badizadegan K, Wang Z, Dasari R, Feld MS, Grillone G. Model-based spectroscopic analysis of the oral cavity: impact of anatomy. J Biomed Opt. 2008;13(6):064034.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Roblyer D, Kurachi C, Stepanek V, Williams MD, El-Naggar AK, Lee JJ, Gillenwater AM, Richards-Kortum R. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev Res (Phila). 2009;2(5):423–31.CrossRefGoogle Scholar
  43. 43.
    Wang A, Nammalavar V, Drezek R. Targeting spectral signatures of progressively dysplastic stratified epithelia using angularly variable fiber geometry in reflectance Monte Carlo simulations. J Biomed Opt. 2007;12(4):044012.PubMedCrossRefGoogle Scholar
  44. 44.
    Arifler D, Schwarz RA, Chang SK, Richards-Kortum R. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma. Appl Opt. 2005;44(20):4291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Georgakoudi I, Sheets EE, Müller MG, Backman V, Crum CP, Badizadegan K, Dasari RR, Feld MS. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol. 2002;186(3):374–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Marina OC, Sanders CK, Mourant JR. Effects of acetic acid on light scattering from cells. J Biomed Opt. 2012;17(8):085002.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review. Talanta. 2000;51:415–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Awan KH, Morgan PR, Warnakulasuriya S. Assessing the accuracy of autofluorescence, chemiluminescence and toluidine blue as diagnostic tools for oral potentially malignant disorders—a clinicopathological evaluation. Clin Oral Investig. 2015;19(9):2267–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Epstein JB, Silverman SJ, Epstein JD, Lonky SA, Bride MA. Analysis of oral lesion biopsies identified and evaluated by visual examination, chemiluminescence and toluidine blue. Oral Oncol. 2008;44:538–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Ram S, Siar CH. Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. Int J Oral Maxillofac Surg. 2005;34:521–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Awan KH, Morgan PR, Warnakulasuriya S. Utility of chemiluminescence (ViziLite™) in the detection of oral potentially malignant disorders and benign keratoses. J Oral Pathol Med. 2011;40:541–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Oh ES, Laskin DM. Efficacy of the ViziLite system in the identification of oral lesions. J Oral Maxillofac Surg. 2007;65:424–6.PubMedCrossRefGoogle Scholar
  53. 53.
    McIntosh L, McCullough MJ, Farah CS. The assessment of diffused light illumination and acetic acid rinse (Microlux/DL) in the visualisation of oral mucosal lesions. Oral Oncol. 2009;45:e227–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Sharma N, Mubeen. Non-invasive diagnostic tools in early detection of oral epithelial dysplasia. J Clin Exp Dent. 2011;3:E184–8.CrossRefGoogle Scholar
  55. 55.
    Huber MA, Bsoul SA, Terezhalmy GT. Acetic acid wash and chemiluminescent illumination as an adjunct to conventional oral soft tissue examination for the detection of dysplasia: a pilot study. Quintessence Int. 2004;35:378–84.PubMedGoogle Scholar
  56. 56.
    Epstein JB, Gorsky M, Lonky S, Silverman S Jr, Epstein JD, Bride M. The efficacy of oral lumenoscopy (ViziLite) in visualizing oral mucosal lesions. Spec Care Dentist. 2006;26:171–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Farah CS, McCullough MJ. A pilot case control study on the efficacy of acetic acid wash and chemiluminescent illumination (ViziLite) in the visualisation of oral mucosal white lesions. Oral Oncol. 2007;43:820–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Kerr AR, Sirois DA, Epstein JB. Clinical evaluation of chemiluminescent lighting: an adjunct for oral mucosal examinations. J Clin Dent. 2006;17:59–63.PubMedGoogle Scholar
  59. 59.
    Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992;14(4):275–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Cassas A, Fukuda H, Battle A. Hexyl ALA ALA-based photodynamic therapy in epithelial tumors: in vivo and invitro models. Proc SPIE. 2002;3909:114–23.CrossRefGoogle Scholar
  61. 61.
    Leunig A, Rick K, Stepp H. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg. 1996;172(6):674–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Ebihara A, Liaw L-H, Krasieva TB. Detection and diagnosis of oral cancer by light-induced fluorescence. Lasers Surg Med. 2003;32(1):17–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Leunig A, Mehlmann M, Betz C. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope. 2000;110(1):78–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Leunig A, Mehlmann M, Betz C. Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies. J Photochem Photobiol B. 2001;60(1):44–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Chang CJ, Wilder-Smith P. Topical application of photofrin for photodynamic diagnosis of oral neoplasms. Plast Reconstr Surg. 2005;115(7):1877–86.PubMedCrossRefGoogle Scholar
  66. 66.
    Nitin N, Rosbach KJ, El-Naggar A, Williams M, Gillenwater A, Richards-Kortum RR. Optical molecular imaging of epidermal growth factor receptor expression to improve detection of oral neoplasia. Neoplasia. 2009;11:542–51.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Huang D, Swanson EA, Lin CP. Optical coherence tomography. Science. 1991;254:1178–81.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tsai MT, Lee HC, Lee CK, Yu CH, Chen HM, Chiang CP, Chang CC, Wang YM, Yang CC. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express. 2008;16(20):15847–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K. In-vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41:353–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt. 2009;14(4):044028.PubMedCrossRefGoogle Scholar
  71. 71.
    Hamdoon Z, Jerjes W, Al-Delayme R, McKenzie G, Jay A, Hopper C. Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 2012;4:29.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lee CK, Chi TT, Wu CT, Tsai MT, Chiang CP, Yang CC. Diagnosis of oral precancer with optical coherence tomography. Biomed Opt Express. 2012;3:1632–46.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jerjes W, Upile T, Conn B, Betz CS, Abbas S, Jay A, et al. Oral leukoplakia and erythroplakia subjected to optical coherence tomography: preliminary results. Br J Oral Maxillofac Surg. 2008;46:e7.CrossRefGoogle Scholar
  74. 74.
    Heidari E, Sunny SP, James BL, Lam T, Tran AV, Ravindra DR, Uma K, Praveen BN, Wilder-Smith P, Chen Z, Suresh A, Kuriakose MA. Utilizing optical coherence tomography to assess oral cancer malignancy in a low resource setting. SPIE Photonics West, San Francisco, CA, January 28–February 2, 2017.Google Scholar
  75. 75.
    Tran AV, Lam T, Heidari E, Sunny SP, James BL, Kuriakose MA, Chen Z, Birur PN, Wilder-Smith P. Evaluating imaging markers for oral cancer using optical coherence tomography. Lasers Surg Med. 2016;48(4). Late breaking abstracts #LB29.Google Scholar
  76. 76.
    Sunny SP, Heidari AE, James BL, Ravindra DR, Subhashini AR, Keerthi G, Shubha G, Uma K, Kumar S, Mani S, Kekatpure V, Praveen BN, Suresh A, Lam T, Wilder-Smith P, Chen Z, Kuriakose MA. Field screening for oral cancer using optical coherence tomography. American Head and Neck Society (AHNS) 9th International Conference on Head and Neck Cancer, Seattle, WA, July 16–20, 2016.Google Scholar
  77. 77.
    Firmalino V, Anbarani A, Islip D, Song B, Uthoff R, Takesh T, Liang R, Wilder-Smith P. First clinical results: optical smartphone-based oral cancer screening. 38th American Society for Laser Surgery and Medicine Annual Meeting, Dallas, TX, April 11–15, 2018.Google Scholar
  78. 78.
    Takesh T, Anbarani AG, Ho J, Firmalino V, Liang R, Wilder-Smith P. A novel low-cost miniature probe for oral diagnosis. Lasers Surg Med. 2017;49(4). Late Breaking Abstracts #LB26.Google Scholar
  79. 79.
    Shin D, Pierce MC, Gillenwater AM, Williams MD, Richards-Kortum RR. A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging. PloS One. 2010;5:e11218. Scholar
  80. 80.
    Rahman MS, Ingole N, Roblyer D, et al. Evaluation of a low-cost, portable imaging system for early detection of oral cancer. Head Neck Oncol. 2010;2:10. Scholar
  81. 81.
    Skandarajah A, Sunny SP, Gurpur P, Reber CD, D’Ambrosio MV, Raghavan N, et al. Mobile microscopy as a screening tool for oral cancer in India: a pilot study. PLoS One. 2017;12(11):e0188440. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diana Messadi
    • 1
  • Anh D. Le
    • 2
  • Takako Tanaka
    • 3
  • Petra Wilder-Smith
    • 4
    Email author
  1. 1.Section of Oral Medicine, Division of Oral Biology & MedicineUCLA School of DentistryLos AngelesUSA
  2. 2.Department of Oral and Maxillofacial SurgeryUniversity of Pennsylvania School of Dental MedicinePhiladelphiaUSA
  3. 3.University of Pennsylvania School of Dental MedicinePhiladelphiaUSA
  4. 4.Beckman Laser Institute and Medical Clinic, University of CaliforniaIrvineUSA

Personalised recommendations