Skip to main content

Abstract

Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is appliedat the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain \(\{0,1\}\), and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For disambiguation, we will use the term vertex for elements of the conflict graph, as opposed to nodes of the search tree.

  2. 2.

    By CP search we mean applying a depth-first search using only propagation for reasoning, no LP relaxation is solved during the search.

  3. 3.

    In SCIP, emphasis settings correspond to a group of individual parameters being changed.

  4. 4.

    An instance is called affected when the solving path changes.

References

  1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007)

    Google Scholar 

  3. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_23

    Chapter  Google Scholar 

  5. Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics for mixed integer programming. In: Klatte, D., Lüthi, H.-J., Schmedders, K. (eds.) Operations Research Proceedings 2011. ORP, pp. 71–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1_12

    Chapter  Google Scholar 

  6. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_4

    Chapter  MATH  Google Scholar 

  7. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Achterberg, T., Koch, T., Martin, A.: Miplib 2003. Oper. Res. Lett. 34(4), 361–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., Mehlhorn, K.: SCIL—symbolic constraints in integer linear programming. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 75–87. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_11

    Chapter  Google Scholar 

  10. Aron, I., Hooker, J.N., Yunes, T.H.: SIMPL: a system for integrating optimization techniques. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 21–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0_2

    Chapter  MATH  Google Scholar 

  11. Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis, Technische Universität Berlin (2014)

    Google Scholar 

  12. Berthold, T.: RENS - the optimal rounding. Math. Program. Comput. 6(1), 33–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthold, T., Feydy, T., Stuckey, P.J.: Rapid learning for binary programs. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 51–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_8

    Chapter  MATH  Google Scholar 

  14. Berthold, T., Gamrath, G., Salvagnin,D.: Cloud Branching (in Preparation)

    Google Scholar 

  15. Berthold, T., Stuckey, P.J., Witzig, J.: Local rapid learning for integer programs. Technical report 18–56, ZIB, Berlin (2018)

    Google Scholar 

  16. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed integer programming library: MIPLIB 3.0. Technical report (1998)

    Google Scholar 

  17. Bockmayr, A., Kasper, T.: Branch-and-infer: a unifying framework for integer and finite domain constraint programming. INFORMS J. Comput. 10(3), 287–300 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brearley, A., Mitra, G., Williams, H.: Analysis of mathematical programming problems prior to applying the simplex algorithm. Math. Program. 8, 54–83 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Danna, E.: Performance variability in mixed integer programming. In: Presentation Slides from MIP 2008 Workshop in New York City (2008). http://coral.ie.lehigh.edu/~jeff/mip-2008/program.pdf

  20. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102(1), 71–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davey, B., Boland, N., Stuckey, P.J.: Efficient intelligent backtracking using linear programming. INFORMS J. Comput. 14(4), 373–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davies, T., Gange, G., Stuckey, P.J.: Automatic logic-based benders decomposition with MiniZinc. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-2017), pp. 787–793. AAAI Press (2017). https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14489

  23. FICO Xpress Optimizer. http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx

  24. Gleixner, A., et al.: The SCIP Optimization Suite 6.0. Technical report 18–26, ZIB, Berlin (2018)

    Google Scholar 

  25. Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint programming. In: Proceedings of TRICS: Techniques for Implementing Constraint Programming Systems, A Post-Conference Workshop of CP 2000, pp. 118–133 (2000)

    Google Scholar 

  26. Katsirelos, G., Bacchus, F.: Generalised nogoods in CSPs. In: Proceedings of AAAI-2005, pp. 390–396 (2005)

    Google Scholar 

  27. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA, pp. 390–396. AAAI Press/The MIT Press (2005)

    Google Scholar 

  28. Koch, T., et al.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)

    Article  MathSciNet  Google Scholar 

  29. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming-CP97. CP 1997. LNCS, vol. 1330, pp. 341–355 (1997). https://doi.org/10.1007/BFb0017450

  30. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Theory Driven by Influential Applications, pp. 1–12. INFORMS (2013)

    Google Scholar 

  31. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. McGill, R., Tukey, J.W., Larsen, W.A.: Variations of box plots. Am. Stat. 32(1), 12–16 (1978)

    Google Scholar 

  33. Moskewicz, M.H., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of DAC 2001, pp. 530–535 (2001)

    Google Scholar 

  34. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_19

    Chapter  MATH  Google Scholar 

  35. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_41

    Chapter  MATH  Google Scholar 

  37. Rodosek, R., Wallace, M.G., Hajian, M.T.: A new approach to integrating mixed integer programming and constraint logic programming. Ann. Oper. Res. 86(1), 63–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sandholm, T., Shields, R.: Nogood learning for mixed integer programming. In: Workshop on Hybrid Methods and Branching Rules in Combinatorial Optimization, Montréal (2006)

    Google Scholar 

  39. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6, 445–454 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9(2), 135–196 (1977)

    Article  MATH  Google Scholar 

  41. Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 211–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_17

    Chapter  MATH  Google Scholar 

  42. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Oper. Res. 58(2), 342–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, pp. 279–285. IEEE Press (2001)

    Google Scholar 

Download references

Acknowledgments

The work for this article has been partly conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF grant number 05M14ZAM). We thank the anonymous reviewers for their valuable suggestions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Berthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berthold, T., Stuckey, P.J., Witzig, J. (2019). Local Rapid Learning for Integer Programs. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics