Skip to main content

Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics

  • Chapter
  • First Online:
  • 458 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 283))

Abstract

The important step at the study of the piezo-particulate composites is concerned with the prediction of their effective properties. Hereby a number of models have been put forward at modelling and interpretation of the properties. Examples of the effective piezoelectric properties and related parameters of 0–3, 1–3 and 2–2 ferroelectric ceramic/polymer composites, and 0–3-type composites with two kinds of the ceramic inclusions are discussed to demonstrate the influence of microgeometric characteristics, components and other factors on the electromechanical coupling and piezoelectric performance of the composites. The effective pyroelectric and dielectric properties of the ceramic-based composites are considered to a lesser degree. The microgeometry of the piezo-active composite plays a key role in determining its piezoelectric sensitivity, and changes in the microgeometry can lead to appreciable changes in the piezoelectric sensitivity and related parameters. Main examples of the piezoelectric sensitivity are concerned with composites that are based on either the PZT-type or PbTiO3-type ceramics. Calculated parameters are compared to the known experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)

    Article  CAS  Google Scholar 

  2. K.A. Klicker, J.V. Biggers, R.E. Newnham, Composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5–9 (1981)

    Article  Google Scholar 

  3. H.L.W. Chan, J. Unsworth, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 434–441 (1989)

    Article  CAS  Google Scholar 

  4. H.L.W. Chan, M.C. Cheung, C.L. Choy, Study on BaTiO3/P(VDF–TrFE) 0–3 composites. Ferroelectrics 224, 113–120 (1999)

    Article  Google Scholar 

  5. E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)

    Article  Google Scholar 

  6. S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)

    Article  CAS  Google Scholar 

  7. F. Wang, C. He, Y. Tang, Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)

    Article  CAS  Google Scholar 

  8. J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109, 205–210 (1990)

    Article  CAS  Google Scholar 

  9. H.L.W. Chan, Y. Chen, C.L. Choy, Thermal hysteresis in the permittivity and polarization of lead zirconate titanate/vinylidenefloride-trifluoroethylene 0–3 composites. IEEE Trans. Dielectr. Electr. Insul. 3, 800–805 (1996)

    Article  CAS  Google Scholar 

  10. Y. Hirata, T. Numazawa, H. Takada, Effects of aspect ratio of lead zirconate titanate on 1–3 piezoelectric composite properties. Jpn. J. Appl. Phys. Pt 1(36), 6062–6064 (1997)

    Article  Google Scholar 

  11. L. Pardo, J. Mendiola, C. Alemany, Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J. Appl. Phys. 64, 5092–5097 (1988)

    Article  CAS  Google Scholar 

  12. A.A. Grekov, S.O. Kramarov, A.A. Kuprienko, Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech. Compos. Mater. 25, 54–61 (1989)

    Article  Google Scholar 

  13. F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot, Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1497–1505 (1998)

    Article  CAS  Google Scholar 

  14. V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)

    Article  Google Scholar 

  15. F. Levassort, V.Yu. Topolov, M. Lethiecq, A comparative study of different methods of evaluating effective electromechanical properties of 0–3 and 1–3 ceramic/polymer composites. J. Phys. D Appl. Phys. 33, 2064–2068 (2000)

    Google Scholar 

  16. C.K. Wong, Y.M. Poon, F.G. Shin, Explicit formulas for effective piezoelectric coefficients of ferroelectric 0–3 composites based on effective medium theory. J. Appl. Phys. 93, 487–496 (2003)

    Article  CAS  Google Scholar 

  17. N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)

    Article  Google Scholar 

  18. S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006)

    Google Scholar 

  19. Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)

    Google Scholar 

  20. R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)

    Article  Google Scholar 

  21. R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)

    Article  CAS  Google Scholar 

  22. V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko, Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J. Phys. D Appl. Phys. 41, 035406 (2008)

    Google Scholar 

  23. V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)

    Google Scholar 

  24. V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-Active Composites. Orientation Effects and Anisotropy Factors (Springer, Berlin, Heidelberg, 2014)

    Google Scholar 

  25. V.Yu. Topolov, C.R. Bowen, P. Bisegna, New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens. Actuators A – Phys. 229, 94–103 (2015)

    Google Scholar 

  26. T.R. Gururaja, A. Safari, R.E. Newnham, L.E. Cross, Piezoelectric ceramic/polymer composites for transducer applications, in Electronic Ceramics: Properties, Devices, and Applications, ed. by M. Levinson (Marcel Dekker, New York Basel, 1988), pp. 92–128

    Google Scholar 

  27. G.M. Garner, N.M. Shorrocks, R.W. Whatmore, M.T. Goosey, P. Seth, F.W. Ainger, 0–3 piezoelectric composites for large area hydrophones. Ferroelectrics 93, 169–176 (1989)

    Article  CAS  Google Scholar 

  28. A. Safari, E.K. Akdogan, Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331, 153–179 (2006)

    Article  CAS  Google Scholar 

  29. C.A. Randall, D.V. Miller, J.H. Adair, A.S. Bhalla, Processing of electroceramic—polymer composites using the electrorheological effect. J. Mater. Res. 8, 899–904 (1993)

    Article  CAS  Google Scholar 

  30. H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)

    Article  Google Scholar 

  31. M.P. Wenger, D.K. Das-Gupta, Mixed connectivity composite material characterization for electroactive sensors. Polym. Eng. Sci. 39, 1176–1188 (1999)

    Article  CAS  Google Scholar 

  32. L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)

    Google Scholar 

  33. J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)

    Article  CAS  Google Scholar 

  34. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  35. M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993)

    Google Scholar 

  36. M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  Google Scholar 

  37. C. Poizat, M. Sester, Homogénéisation périodique de composites piézoélectriques 0–3: influence de la distribution. Rev. des Compos. et des Matériaux Avancés 11, 65–74 (2001)

    Article  CAS  Google Scholar 

  38. J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)

    Article  Google Scholar 

  39. C.J. Dias, D.K. Das-Gupta, Electroactive polymer-ceramic composites, in Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, July 3–8, 1994, Brisbane, Australia (IEEE, Piscataway (1994), pp. 175–178

    Google Scholar 

  40. D.A. Berlincourt, D.R. Cerran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, in Physical Acoustics. Principles and Methods, Vol. 1: Methods and Devices, ed. Mason W (Pt A. Academic Press, New York London, 1964), pp. 169–270

    Google Scholar 

  41. R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220

    Google Scholar 

  42. V.Yu. Topolov, P. Bisegna, Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J. Electroceram. 25, 26–37 (2010)

    Google Scholar 

  43. V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active composites. Microgeometry – Sensitivity Relations (Springer International Publishing Switzerland, 2018)

    Google Scholar 

  44. V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)

    Google Scholar 

  45. P. Bisegna, Private communication (2018)

    Google Scholar 

  46. L.V. Gibiansky, S. Torquato, On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J. Mech. Phys. Solids 45, 689–708 (1997)

    Article  Google Scholar 

  47. H. Khanbareh, Expanding the functionality of piezo-particulate composites. Dissertation, Delft University of Technology, Delft, 2016

    Google Scholar 

  48. C. Dias, D. Das Gupta, Inorganic ceramic polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)

    Article  CAS  Google Scholar 

  49. V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr. Rep. 39, 805–809 (1994)

    Google Scholar 

  50. V.Yu. Topolov, A.V. Turik, A.I. Chernobabov, On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154, 271–276 (1994)

    Google Scholar 

  51. E.I. Bondarenko, V.Yu. Topolov, A.V. Turik, The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. Sect. 13, 13–19 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Khanbareh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanbareh, H., Topolov, V.Y., Bowen, C.R. (2019). Prediction of Effective Properties of Composites Based on Ferroelectric Ceramics. In: Piezo-Particulate Composites. Springer Series in Materials Science, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-19204-4_5

Download citation

Publish with us

Policies and ethics