Skip to main content

Experimental Studies on Effective Properties and Related Parameters of Piezo-Particulate Composites

  • Chapter
  • First Online:
Piezo-Particulate Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 283))

  • 480 Accesses

Abstract

Numerous experimental results on the effective dielectric, pyroelectric and piezoelectric properties and related parameters of piezo-particulate composites based on ferroelectric ceramics are described and analysed. The effective properties of the composites structured by means of dielectrophoresis (0–3 and/or 1–3 connectivity patterns) are compared to the properties of related random (or non-structured) composites with 0–3 connectivity. The influence of the composite microgeometry and properties of the components on the effective properties is discussed. Large values of maximum of the piezoelectric coefficient \(g_{33}^{*}\) describing piezoelectric sensitivity are achieved in the structured composite. The considerable increase of \(g_{33}^{*}\) is a result of forming a porous structure in the polymer matrix of the composite. Examples of the influence of the porous (foam) polymer matrix on the piezoelectric coefficient \(g_{33}^{*}\) are considered for composite based on the ferroelectric PZT ceramic. High-temperature piezo-active composites exhibit thermal stability of both the dielectric and piezoelectric properties in the presence of the ferroelectric ceramic component with the high Curie temperature TC and due to the considerable thermal stability of the dielectric properties of the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)

    Google Scholar 

  2. V.M. Levin, M.I. Rakovskaja, W.S. Kreher, The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)

    Article  Google Scholar 

  3. Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)

    Google Scholar 

  4. R. Kar-Gupta, T.A. Venkatesh, Electromechanical response of piezoelectric composites: effects of geometric connectivity and grain size. Acta Mater. 56, 3810–3823 (2008)

    Article  CAS  Google Scholar 

  5. V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)

    Google Scholar 

  6. V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-active Composites. Orientation Effects and Anisotropy Factors (Springer, Heidelberg, New York, Dordrecht, London, 2014)

    Book  Google Scholar 

  7. V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active Composites. Microgeometry – Sensitivity Relations (Springer International Publishing, Cham, 2018)

    Google Scholar 

  8. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)

    Article  CAS  Google Scholar 

  9. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London New York, 1971)

    Google Scholar 

  10. Y. Xu, Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, London, New York, Toronto, 1991)

    Google Scholar 

  11. A.V. Gorish, V.P. Dudkevich, M.F. Kupriyanov, A.E. Panich, A.V. Turik, Piezoelectric Device-Making. Vol. 1: Physics of Ferroelectric Ceramics (Radiotekhnika, Moscow, 1999) (in Russian)

    Google Scholar 

  12. P. Greil, Mikrostruktur keramischer Werkstoffe, ed. by Keramik, H. Schaumburg (B. G. Teubner, Stuttgart, 1994), pp. 29–104

    Google Scholar 

  13. K. Ruschmeyer, G. Helke, J. Koch, K. Lubitz, T. Möckl, A. Petersen, M. Riedel, A. Schönecker, Piezokeramik: Grundlagen, Werkstoffe, Applikationen (Expert-Verlag, Renningen-Malmsheim, 1995)

    Google Scholar 

  14. H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of PT-epoxy composites. Smart Mater. Struct. 23, 105030 (2014)

    Article  Google Scholar 

  15. H. Khanbareh, Expanding the functionality of piezo-particulate composites. Proefschrift ter verkrijging van der grad van doctor aan de Technische Universiteit Delft (Delft, 2016)

    Google Scholar 

  16. I.S. Zheludev, Physics of Crystalline Dielectrics. Vol. 2: Electrical Properties (Plenum, New York, 1971)

    Book  Google Scholar 

  17. S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58, 31–36 (2005)

    Article  CAS  Google Scholar 

  18. R.W. Whatmore, R. Watton, Pyroelectric materials and devices, in Infrared Detectors and Emitters: Materials and Devices, ed. by P. Capper, C.T. Elliott (Springer, New York, 2001), pp. 99–147

    Chapter  Google Scholar 

  19. C.R. Bowen, J. Taylor, E. Le Boulbar, D. Zabek, V.Yu. Topolov, A modified figure of merit for pyroelectric energy harvesting. Mater. Lett. 138, 243–246 (2015)

    Article  CAS  Google Scholar 

  20. C. Wong, F. Shin, Effect of electrical conductivity on poling and the dielectric, pyroelectric and piezoelectric properties of ferroelectric 0–3 composites. J. Mater. Sci. 41, 229–249 (2006)

    Article  CAS  Google Scholar 

  21. W.K. Sakamoto, D. Kanda, D. Das-Gupta, Dielectric and pyroelectric properties of a composite of ferroelectric ceramic and polyurethane. Mater. Res. Innovations 5, 257–260 (2002)

    Article  CAS  Google Scholar 

  22. W. Sakamoto, P. Marin-Franch, D. Das-Gupta, Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sens. Actuators, A 100, 165–174 (2002)

    Article  CAS  Google Scholar 

  23. P. Marin-Franch, T. Martin, D. Tunnicliffe, D. Das-Gupta, PTCa/PEKK piezo-composites for acoustic emission detection. Sens. Actuators, A 99, 236–243 (2002)

    Article  CAS  Google Scholar 

  24. P. Marin-Franch, D. Tunnicliffe, D. Das-Gupta, Pyroelectric properties of the PTCa/PEKK composite transducers, in Eighth International Conference on Dielectric Materials, Measurements and Applications (IEE Conf. Publ. No. 473). 17–21 September 2000, Edinburgh, UK. (Institution of Electrical Engineers, 2000), pp. 386–391

    Google Scholar 

  25. M. Abdullah, D. Das-Gupta, Electroactive properties of polymer-ceramic composites. Ferroelectrics 87, 213–228 (1988)

    Article  Google Scholar 

  26. S. Bravina, N. Morozovsky, J. Kułek, B. Hilczer, Pyroelectric thermowave probing and polarization reversal in TGS/PEO composites. Mol. Cryst. Liq. Cryst. 497, 109/[441]–120/[452] (2008)

    Article  Google Scholar 

  27. T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328–4332 (1982)

    Article  CAS  Google Scholar 

  28. D. van den Ende, B. Bory, W. Groen, S. van der Zwaag, Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010)

    Article  Google Scholar 

  29. H. Savakus, K. Klicker, R. Newnham, PZT-epoxy piezoelectric transducers: a simplified fabrication procedure. Mater. Res. Bull. 16, 677–680 (1981)

    Article  CAS  Google Scholar 

  30. H. Khanbareh, K. de Boom, S. van der Zwaag, W.A. Groen, Highly sensitive piezo particulate-polymer foam composites for robotic skin application. Ferroelectrics 515, 25–33 (2017)

    Article  CAS  Google Scholar 

  31. V.Yu. Topolov, A.V. Turik, Porous piezoelectric composites with extremely high reception parameters. Tech. Phys. 46, 1093–1100 (2001)

    Article  CAS  Google Scholar 

  32. C.P. Bowen, R.E. Newnham, C.A. Randall, Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13, 205–210 (1998)

    Article  CAS  Google Scholar 

  33. A.V. Krivoruchko, Effects of combination of physical properties and orientation effects in ferroelectric composites. Abstract of thesis, Cand. Sci. (Phys. & Math.) (Voronezh, 2009) (in Russian)

    Google Scholar 

  34. S.A. Wilson, G.M. Maistros, R.W. Whatmore, Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D Appl. Phys. 38, 175–182 (2005)

    Google Scholar 

  35. S. Van Kempen, Optimisation of piezoelectric composite materials design through improved materials selection and property prediction methods, Master’s thesis (Delft University of Technology, Delft, 2012)

    Google Scholar 

  36. D.A. van den Ende, Structured piezoelectric composites, materials and applications, Ph. D. thesis (Delft University of Technology, Delft, 2012)

    Google Scholar 

  37. F. Yu, Q. Lu, S. Zhang, H. Wang, X. Cheng, X. Zhao, High-performance, high-temperature piezoelectric BiB3O6 crystals. J. Mater. Chem. C 3, 329–338 (2015)

    Article  CAS  Google Scholar 

  38. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)

    Article  CAS  Google Scholar 

  39. H. Khanbareh, M. Hegde, J.C. Bijleveld, S. van der Zwaag, P. Groen, Functionally graded ferroelectric polyetherimide composites for high temperature sensing. J. Mater. Chem. C 5, 9389–9397 (2017)

    Article  CAS  Google Scholar 

  40. Y. Shen, Y. Lin, C.-W. Nan, Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Func. Mater. 17, 2405–2410 (2007)

    Article  CAS  Google Scholar 

  41. M. Carvalho Araújo, C.M. Costa, S. Lanceros-Méndez, Evaluation of dielectric models for ceramic/polymer composites: effect of filler size and concentration. J. Non-Cryst. Solids 387, 6–15 (2014)

    Article  Google Scholar 

  42. J. Yao, C. Xiong, L. Dong, C. Chen, Y. Lei, L. Chen, R. Li, Q. Zhu, X. Liu, Enhancement of dielectric constant and piezoelectric coefficient of ceramic–polymer composites by interface chelation. J. Mater. Chem. 19, 2817–2821 (2009)

    Article  CAS  Google Scholar 

  43. Q. Chi, J. Sun, C. Zhang, G. Liu, J. Lin, Y. Wang, X. Wang, Q. Lei, Enhanced dielectric performance of amorphous calcium copper titanate/polyimide hybrid film. J. Mater. Chem. C 2, 172–177 (2014)

    Article  CAS  Google Scholar 

  44. X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization. J. Mater. Chem. A 3, 10005–10012 (2015)

    Article  CAS  Google Scholar 

  45. C. Baur, Y. Zhou, J. Sipes, S. Priya, W. Voit, Organic, flexible, polymer composites for high-temperature piezoelectric applications. Energy Harvest. Syst. Mater., Mech., Circuits Storage 1, 167–177 (2014)

    Google Scholar 

  46. S.V. Glushanin, V.Yu. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater. Chem. Phys. 97, 357–364 (2006)

    Article  CAS  Google Scholar 

  47. S.V. Glushanin, V.Yu. Topolov, Features of the electromechanical properties of 0–3 composites of the PbTiO3-based ferroelectric ceramics–polymer type. Tech. Phys. Lett. 31, 346–348 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Khanbareh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanbareh, H., Topolov, V.Y., Bowen, C.R. (2019). Experimental Studies on Effective Properties and Related Parameters of Piezo-Particulate Composites. In: Piezo-Particulate Composites. Springer Series in Materials Science, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-19204-4_3

Download citation

Publish with us

Policies and ethics