Skip to main content

Dimension-Six Matrix Elements from Sum Rules

  • Chapter
  • First Online:
Book cover Charming New Physics in Beautiful Processes?

Part of the book series: Springer Theses ((Springer Theses))

  • 287 Accesses

Abstract

As we have seen in Sect. 2.4.2, the SM contribution to meson mixing arises at the 1-loop level and is both CKM and GIM suppressed. This makes these observables highly sensitive to new physics contributions (an issue which we will explore further in Chap. 7), and so a precise knowledge of the theoretical predictions is very important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As discussed below the sum rule reproduces the VSA at LO. Therefore the factors \(A_{\tilde{Q}_i}\) appear at leading order in the expansion of the results in \(\epsilon \). However, the correlator is computed in d dimensions and corrections can appear. We find that this happens only for \(\tilde{Q}_1\) where the contraction of the two \(\gamma \) matrices inside the trace yields a d-dimensional factor.

  2. 2.

    The arbitrariness of the weight function is a mathematical statement which holds for the dispersion relation. The sum rule in Eq. 6.3.7 does however also assume quark-hadron duality and breaks down if pathological weight functions are used, e.g. rapidly oscillating ones. In the following we only use slowly varying weight functions with support on the complete integration domain.

  3. 3.

    This choice, while technically original, is a relatively straightforward modification of the previous usage of weight functions in sum rule calculations.

References

  1. Asatrian HM, Hovhannisyan A, Nierste U, Yeghiazaryan A (2017) Towards next-to-next-to-leading-log accuracy for the width difference in the \(B_s-\bar{B}_s\) system: fermionic contributions to order \((m_c/m_b)^0\) and \((m_c/m_b)^1\). JHEP 10:191. https://doi.org/10.1007/JHEP10(2017)191, arXiv:1709.02160

  2. Dalgic E, Gray A, Gamiz E, Davies CTH, Lepage GP, Shigemitsu J et al (2007) \(B^0_{s} - \bar{B}^0_s\) mixing parameters from unquenched lattice QCD. Phys Rev D 76:011501. https://doi.org/10.1103/PhysRevD.76.011501, arXiv:hep-lat/0610104

  3. ETM collaboration, Carrasco N et al (2014) B-physics from \(N_f\) = 2 tmQCD: the Standard Model and beyond. JHEP 03:016. https://doi.org/10.1007/JHEP03(2014)016, arXiv:1308.1851

  4. Fermilab Lattice, MILC collaboration, Bazavov A et al (2016) \(B^0_{(s)}\)-mixing matrix elements from lattice QCD for the Standard Model and beyond. Phys Rev D 93:113016. https://doi.org/10.1103/PhysRevD.93.113016, arXiv:1602.03560

  5. Shifman MA, Vainshtein AI, Zakharov VI (1979) QCD and resonance physics. Theoretical foundations. Nucl Phys B 147:385–447. https://doi.org/10.1016/0550-3213(79)90022-1

    Article  ADS  Google Scholar 

  6. Shifman MA, Vainshtein AI, Zakharov VI (1979) QCD and resonance physics: applications. Nucl Phys B 147:448–518. https://doi.org/10.1016/0550-3213(79)90023-3

    Article  ADS  Google Scholar 

  7. Chetyrkin KG, Kataev AL, Krasulin AB, Pivovarov AA (1986) Calculation of the \(K^0\)-\(\bar{K}^0\) mixing parameter via the QCD sum rules at finite energies. Phys Lett B 174:104. https://doi.org/10.1016/0370-2693(86)91137-8, arXiv:hep-ph/0103230

    Article  ADS  Google Scholar 

  8. Korner JG, Onishchenko AI, Petrov AA, Pivovarov AA (2003) \(B^0-\bar{B}^0\) mixing beyond factorization. Phys Rev Lett 91:192002. https://doi.org/10.1103/PhysRevLett.91.192002, arXiv:hep-ph/0306032

  9. Grozin AG, Klein R, Mannel T, Pivovarov AA (2016) \(B^0-\bar{B}^0\) mixing at next-to-leading order. Phys Rev D 94:034024. https://doi.org/10.1103/PhysRevD.94.034024, arXiv:1606.06054

  10. Mannel T, Pecjak BD, Pivovarov AA (2011) Sum rule estimate of the subleading non-perturbative contributions to \(B_s - \bar{B}_s\) mixing. Eur Phys J C 71:1607. https://doi.org/10.1140/epjc/s10052-011-1607-4, arXiv:hep-ph/0703244

  11. Baek MS, Lee J, Liu C, Song HS (1998) Four quark operators relevant to B meson lifetimes from QCD sum rules. Phys Rev D 57:4091–4096. https://doi.org/10.1103/PhysRevD.57.4091, arXiv:hep-ph/9709386

    Article  ADS  Google Scholar 

  12. Cheng H-Y, Yang K-C (1999) Nonspectator effects and \(B\) meson lifetimes from a field theoretic calculation. Phys Rev D 59:014011. https://doi.org/10.1103/PhysRevD.59.014011, arXiv:hep-ph/9805222

  13. Lenz A (2015) Lifetimes and heavy quark expansion. Int J Mod Phys A 30:1543005. https://doi.org/10.1142/S0217751X15430058, arXiv:1405.3601

    Article  ADS  Google Scholar 

  14. Becirevic D (2001) Theoretical progress in describing the B meson lifetimes. PoS HEP2001 098. arXiv:hep-ph/0110124

  15. Lenz A, Rauh T (2013) D-meson lifetimes within the heavy quark expansion. Phys Rev D 88:034004. https://doi.org/10.1103/PhysRevD.88.034004, arXiv:1305.3588

  16. Bobrowski M, Lenz A, Riedl J, Rohrwild J (2010) How large can the SM contribution to CP violation in \(D^0-\bar{D}^0\) mixing be? JHEP 03:009. https://doi.org/10.1007/JHEP03(2010)009, arXiv:1002.4794

  17. Bigi IIY, Uraltsev NG (2001) \(D^0-\bar{D}^0\) oscillations as a probe of quark hadron duality. Nucl Phys B 592:92–106. https://doi.org/10.1016/S0550-3213(00)00604-0, arXiv:hep-ph/0005089

    Article  ADS  Google Scholar 

  18. Georgi H (1992) \(D\)-\(\bar{D}\) mixing in heavy quark effective field theory. Phys Lett B 297:353–357. https://doi.org/10.1016/0370-2693(92)91274-D, arXiv:hep-ph/9209291

    Article  ADS  Google Scholar 

  19. Ohl T, Ricciardi G, Simmons EH (1993) D-anti-D mixing in heavy quark effective field theory: the sequel. Nucl Phys B 403:605–632. https://doi.org/10.1016/0550-3213(93)90364-U, arXiv:hep-ph/9301212

    Article  ADS  Google Scholar 

  20. Bobrowski M, Lenz A, Rauh T (2012) Short distance \(D^0-\bar{D}^0\) mixing. In: Proceedings, 5th International workshop on charm physics (Charm 2012): Honolulu, Hawaii, USA, May 14–17, 2012. arXiv:1208.6438

  21. Flynn JM, Hernandez OF, Hill BR (1991) Renormalization of four fermion operators determining B anti-B mixing on the lattice. Phys Rev D 43:3709–3714. https://doi.org/10.1103/PhysRevD.43.3709

    Article  ADS  Google Scholar 

  22. Buchalla G (1997) Renormalization of \(\Delta B = 2\) transitions in the static limit beyond leading logarithms. Phys Lett B 395:364–368. https://doi.org/10.1016/S0370-2693(97)00043-9, arXiv:hep-ph/9608232

    Article  ADS  Google Scholar 

  23. Ciuchini M, Franco E, Gimenez V (1996) Next-to-leading order renormalization of the \(\Delta B = 2\) operators in the static theory. Phys Lett B 388:167–172. https://doi.org/10.1016/0370-2693(96)01131-8, arXiv:hep-ph/9608204

    Article  ADS  Google Scholar 

  24. Collins JC (1986) Renormalization. In: Cambridge monographs on mathematical physics, vol 26. Cambridge University Press, Cambridge

    Google Scholar 

  25. Buras AJ, Weisz PH (1990) QCD nonleading corrections to weak decays in dimensional regularization and ’t Hooft-Veltman schemes. Nucl Phys B 333:66–99. https://doi.org/10.1016/0550-3213(90)90223-Z

    Article  ADS  Google Scholar 

  26. Herrlich S, Nierste U (1995) Evanescent operators, scheme dependences and double insertions. Nucl Phys B 455:39–58. https://doi.org/10.1016/0550-3213(95)00474-7, arXiv:hep-ph/9412375

    Article  ADS  Google Scholar 

  27. Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (1999) Next-to-leading order QCD corrections to the lifetime difference of \(B_s\) mesons. Phys Lett B 459:631–640. https://doi.org/10.1016/S0370-2693(99)00684-X, arXiv:hep-ph/9808385

    Article  ADS  Google Scholar 

  28. Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431. https://doi.org/10.1103/PhysRevD.54.4419, https://doi.org/10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259

  29. Nogueira P (1993) Automatic Feynman graph generation. J Comput Phys 105:279–289. https://doi.org/10.1006/jcph.1993.1074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jamin M, Lautenbacher ME (1993) TRACER: version 1.1: a mathematica package for \(\gamma \) algebra in arbitrary dimensions. Comput Phys Commun 74:265–288. https://doi.org/10.1016/0010-4655(93)90097-V

    Article  ADS  Google Scholar 

  31. Patel HH (2015) Package-X: a mathematica package for the analytic calculation of one-loop integrals. Comput Phys Commun 197:276–290. https://doi.org/10.1016/j.cpc.2015.08.017, arXiv:1503.01469

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Patel HH (2017) Package-X 2.0: a mathematica package for the analytic calculation of one-loop integrals. Comput Phys Commun 218:66–70. https://doi.org/10.1016/j.cpc.2017.04.015, arXiv:1612.00009

    Article  ADS  MathSciNet  Google Scholar 

  33. Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072. https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167

    Article  Google Scholar 

  34. Eichten E, Hill BR (1990) An effective field theory for the calculation of matrix elements involving heavy quarks. Phys Lett B 234:511–516. https://doi.org/10.1016/0370-2693(90)92049-O

    Article  ADS  Google Scholar 

  35. Smirnov AV (2008) Algorithm FIRE-Feynman Integral REduction. JHEP 10:107. https://doi.org/10.1088/1126-6708/2008/10/107, arXiv:0807.3243

    Article  ADS  MATH  Google Scholar 

  36. Smirnov AV, Smirnov VA (2013) FIRE4, LiteRed and accompanying tools to solve integration by parts relations. Comput Phys Commun 184:2820–2827. https://doi.org/10.1016/j.cpc.2013.06.016, arXiv:1302.5885

    Article  ADS  MATH  Google Scholar 

  37. Smirnov AV (2015) FIRE5: a C++ implementation of Feynman Integral REduction. Comput Phys Commun 189:182–191. https://doi.org/10.1016/j.cpc.2014.11.024, arXiv:1408.2372

    Article  ADS  MATH  Google Scholar 

  38. Chetyrkin KG, Tkachov FV (1981) Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl Phys B 192:159–204. https://doi.org/10.1016/0550-3213(81)90199-1

    Article  ADS  Google Scholar 

  39. Laporta S (2000) High precision calculation of multiloop Feynman integrals by difference equations. Int J Mod Phys A 15:5087–5159. https://doi.org/10.1016/S0217-751X(00)00215-7, https://doi.org/10.1142/S0217751X00002157, arXiv:hep-ph/0102033

  40. Grozin AG, Lee RN (2009) Three-loop HQET vertex diagrams for B0-anti-B0 mixing. JHEP 02:047. https://doi.org/10.1088/1126-6708/2009/02/047, arXiv:0812.4522

    Article  Google Scholar 

  41. Ball P, Braun VM (1994) Next-to-leading order corrections to meson masses in the heavy quark effective theory. Phys Rev D 49:2472–2489. https://doi.org/10.1103/PhysRevD.49.2472, arXiv:hep-ph/9307291

    Article  ADS  Google Scholar 

  42. Broadhurst DJ, Grozin AG (1992) Operator product expansion in static quark effective field theory: large perturbative correction. Phys Lett B 274:421–427. https://doi.org/10.1016/0370-2693(92)92009-6, arXiv:hep-ph/9908363

    Article  ADS  Google Scholar 

  43. Bagan E, Ball P, Braun VM, Dosch HG (1992) QCD sum rules in the effective heavy quark theory. Phys Lett B 278:457–464. https://doi.org/10.1016/0370-2693(92)90585-R

    Article  ADS  Google Scholar 

  44. Neubert M (1992) Heavy meson form-factors from QCD sum rules. Phys Rev D 45:2451–2466. https://doi.org/10.1103/PhysRevD.45.2451

    Article  ADS  Google Scholar 

  45. Chetyrkin KG, Kuhn JH, Steinhauser M (2000) RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput Phys Commun 133:43–65. https://doi.org/10.1016/S0010-4655(00)00155-7, arXiv:hep-ph/0004189

    Article  ADS  MATH  Google Scholar 

  46. Herren F, Steinhauser M (2018) Version 3 of RunDec and CRunDec. Comput Phys Commun 224:333–345. https://doi.org/10.1016/j.cpc.2017.11.014, arXiv:1703.03751

    Article  ADS  Google Scholar 

  47. Particle Data Group collaboration, Patrignani C et al (2016) Review of particle physics. Chin Phys C 40:100001. https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  48. Beneke M, Maier A, Piclum J, Rauh T (2015) The bottom-quark mass from non-relativistic sum rules at NNNLO. Nucl Phys B 891:42–72. https://doi.org/10.1016/j.nuclphysb.2014.12.001, arXiv:1411.3132

    Article  ADS  MATH  Google Scholar 

  49. Beneke M, Maier A, Piclum J, Rauh T (2016) NNNLO determination of the bottom-quark mass from non-relativistic sum rules. PoS RADCOR2015 035. https://doi.org/10.22323/1.235.0035, arXiv:1601.02949

  50. Baikov PA, Chetyrkin KG, Kühn JH (2017) Five-loop running of the QCD coupling constant. Phys Rev Lett 118:082002. https://doi.org/10.1103/PhysRevLett.118.082002, arXiv:1606.08659

  51. Herzog F, Ruijl B, Ueda T, Vermaseren JAM, Vogt A (2017) The five-loop beta function of Yang-Mills theory with fermions. JHEP 02:090. https://doi.org/10.1007/JHEP02(2017)090, arXiv:1701.01404

  52. Luthe T, Maier A, Marquard P, Schroder Y (2017) Complete renormalization of QCD at five loops. JHEP 03:020. https://doi.org/10.1007/JHEP03(2017)020, arXiv:1701.07068

  53. Luthe T, Maier A, Marquard P, Schroder Y (2017) The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge. JHEP 10:166. https://doi.org/10.1007/JHEP10(2017)166, arXiv:1709.07718

  54. Chetyrkin KG, Falcioni G, Herzog F, Vermaseren JAM (2017) Five-loop renormalisation of QCD in covariant gauges. JHEP 10:179. https://doi.org/10.1007/JHEP12(2017)006, https://doi.org/10.3204/PUBDB-2018-02123, https://doi.org/10.1007/JHEP10(2017)179, arXiv:1709.08541

  55. Aoki S et al (2017) Review of lattice results concerning low-energy particle physics. Eur Phys J C 77:112. https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299

  56. HFLAV collaboration (2017) B lifetime and oscillation parameters, Summer 2017. http://www.slac.stanford.edu/xorg/hflav/osc/summer_2017/

  57. Grozin AG, Mannel T, Pivovarov AA (2017) Towards a next-to-next-to-leading order analysis of matching in \(B^0-\bar{B}^0\) mixing. Phys Rev D 96:074032. https://doi.org/10.1103/PhysRevD.96.074032, arXiv:1706.05910

  58. Beneke M (1998) A quark mass definition adequate for threshold problems. Phys Lett B 434:115–125. https://doi.org/10.1016/S0370-2693(98)00741-2, arXiv:hep-ph/9804241

    Article  ADS  Google Scholar 

  59. Hoang AH, Ligeti Z, Manohar AV (1999) B decay and the Upsilon mass. Phys Rev Lett 82:277–280. https://doi.org/10.1103/PhysRevLett.82.277, arXiv:hep-ph/9809423

    Article  ADS  Google Scholar 

  60. Bigi IIY, Shifman MA, Uraltsev N, Vainshtein AI (1997) High power \(n\) of \(m_b\) in beauty widths and \(n=5 \rightarrow \infty \) limit. Phys Rev D 56:4017–4030. https://doi.org/10.1103/PhysRevD.56.4017, arXiv:hep-ph/9704245

    Article  ADS  Google Scholar 

  61. Grozin AG, Mannel T, Pivovarov AA (2018) \(B^0-\bar{B}^0\) mixing: matching to HQET at NNLO. Phys Rev D 98:054020. https://doi.org/10.1103/PhysRevD.98.054020, arXiv:1806.00253

  62. Laplace S, Ligeti Z, Nir Y, Perez G (2002) Implications of the CP asymmetry in semileptonic B decay. Phys Rev D 65:094040. https://doi.org/10.1103/PhysRevD.65.094040, arXiv:hep-ph/0202010

  63. Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (2002) The \(B^+\)\(B^0_d\) lifetime difference beyond leading logarithms. Nucl Phys B 639:389–407. https://doi.org/10.1016/S0550-3213(02)00561-8, arXiv:hep-ph/0202106

    Article  ADS  Google Scholar 

  64. Ciuchini M, Franco E, Lubicz V, Mescia F (2002) Next-to-leading order QCD corrections to spectator effects in lifetimes of beauty hadrons. Nucl Phys B 625:211–238. https://doi.org/10.1016/S0550-3213(02)00006-8, arXiv:hep-ph/0110375

    Article  ADS  Google Scholar 

  65. Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236. https://doi.org/10.1016/S0550-3213(02)00262-6, arXiv:hep-ph/0203089

    Article  ADS  Google Scholar 

  66. Gabbiani F, Onishchenko AI, Petrov AA (2004) Spectator effects and lifetimes of heavy hadrons. Phys Rev D 70:094031. https://doi.org/10.1103/PhysRevD.70.094031, arXiv:hep-ph/0407004

  67. Lucha W, Melikhov D, Simula S (2011) OPE, charm-quark mass, and decay constants of D and D\(_s\) mesons from QCD sum rules. Phys Lett B 701:82–88. https://doi.org/10.1016/j.physletb.2011.05.031, arXiv:1101.5986

    Article  ADS  Google Scholar 

  68. Gelhausen P, Khodjamirian A, Pivovarov AA, Rosenthal D (2013) Decay constants of heavy-light vector mesons from QCD sum rules. Phys Rev D 88:014015. https://doi.org/10.1103/PhysRevD.88.014015, https://doi.org/10.1103/PhysRevD.91.099901, https://doi.org/10.1103/PhysRevD.89.099901, arXiv:1305.5432

  69. UKQCD collaboration, Di Pierro M, Sachrajda CT (1998) A lattice study of spectator effects in inclusive decays of B mesons. Nucl Phys B 534:373–391. https://doi.org/10.1016/S0550-3213(98)00580-X, arXiv:hep-lat/9805028

    Article  ADS  Google Scholar 

  70. Carrasco N et al (2014) \(D^0-\bar{D}^0\) mixing in the standard model and beyond from \(N_f=2\) twisted mass QCD. Phys Rev D 90:014502. https://doi.org/10.1103/PhysRevD.90.014502, arXiv:1403.7302

  71. ETM collaboration, Carrasco N, Dimopoulos P, Frezzotti R, Lubicz V, Rossi GC, Simula S et al (2015) \(\Delta S=2\) and \(\Delta C=2\) bag parameters in the standard model and beyond from \(N_f=2+1+1\) twisted-mass lattice QCD. Phys Rev D 92:034516. https://doi.org/10.1103/PhysRevD.92.034516, arXiv:1505.06639

  72. Bazavov A et al (2018) Short-distance matrix elements for \(D^0\)-meson mixing for \(N_f=2+1\) lattice QCD. Phys Rev D 97:034513. https://doi.org/10.1103/PhysRevD.97.034513, arXiv:1706.04622

  73. Wang Z-G (2015) Analysis of the masses and decay constants of the heavy-light mesons with QCD sum rules. Eur Phys J C 75:427. https://doi.org/10.1140/epjc/s10052-015-3653-9, arXiv:1506.01993

  74. Narison S (2013) A fresh look into \(m_{c,b}\) and precise \(f_{D_(s),B_(s)}\) from heavy-light QCD spectral sum rules. Phys Lett B 718:1321–1333. https://doi.org/10.1016/j.physletb.2012.10.057, arXiv:1209.2023

    Article  ADS  Google Scholar 

  75. Beneke M, Kiyo Y, Maier A, Piclum J (2016) Near-threshold production of heavy quarks with QQbar\(\_\)threshold. Comput Phys Commun 209:96–115. https://doi.org/10.1016/j.cpc.2016.07.026, arXiv:1605.03010

    Article  ADS  Google Scholar 

  76. Beneke M, Maier A, Rauh T, Ruiz-Femenia P (2018) Non-resonant and electroweak NNLO correction to the \(e^+ e^-\) top anti-top threshold. JHEP 02:125. https://doi.org/10.1007/JHEP02(2018)125, arXiv:1711.10429

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Kirk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirk, M.J. (2019). Dimension-Six Matrix Elements from Sum Rules. In: Charming New Physics in Beautiful Processes?. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19197-9_6

Download citation

Publish with us

Policies and ethics