Skip to main content

Charming New Physics in Rare \(B_{s}\) Decays and Mixing?

  • Chapter
  • First Online:
  • 282 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As we have discussed in Sect. 1.2, flavour processes such as rare B decays are excellent probes of new physics at the electroweak scale and beyond, due to their strong suppression in the SM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buras AJ, Girrbach J (2013) Left-handed \(Z^{\prime }\) and \(Z\) FCNC quark couplings facing new \(b \rightarrow s \mu ^+ \mu ^-\) data. JHEP 12:009. https://doi.org/10.1007/JHEP12(2013)009, arXiv:1309.2466

  2. Gauld R, Goertz F, Haisch U (2014) An explicit Z’-boson explanation of the \(B \rightarrow K^* \mu ^+ \mu ^-\) anomaly. JHEP 01:069. https://doi.org/10.1007/JHEP01(2014)069, arXiv:1310.1082

  3. Buras AJ, De Fazio F, Girrbach J (2014) 331 models facing new \(b \rightarrow s\mu ^+ \mu ^-\) data. JHEP 02:112. https://doi.org/10.1007/JHEP02(2014)112, arXiv:1311.6729

  4. Datta A, Duraisamy M, Ghosh D (2014) Explaining the \(B \rightarrow K^\ast \mu ^+ \mu ^-\) data with scalar interactions. Phys Rev D 89:071501. https://doi.org/10.1103/PhysRevD.89.071501, arXiv:1310.1937

  5. Altmannshofer W, Gori S, Pospelov M, Yavin I (2014) Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys Rev D 89:095033. https://doi.org/10.1103/PhysRevD.89.095033, arXiv:1403.1269

  6. Hiller G, Schmaltz M (2014) \(R_K\) and future \(b \rightarrow s \ell \ell \) physics beyond the standard model opportunities. Phys Rev D 90:054014. https://doi.org/10.1103/PhysRevD.90.054014, arXiv:1408.1627

  7. Gripaios B, Nardecchia M, Renner SA (2015) Composite leptoquarks and anomalies in \(B\)-meson decays. JHEP 05:006. https://doi.org/10.1007/JHEP05(2015)006, arXiv:1412.1791

  8. Crivellin A, D’Ambrosio G, Heeck J (2015) Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys Rev Lett 114:151801. https://doi.org/10.1103/PhysRevLett.114.151801, arXiv:1501.00993

  9. de Medeiros Varzielas I, Hiller G (2015) Clues for flavor from rare lepton and quark decays. JHEP 06:072. https://doi.org/10.1007/JHEP06(2015)072, arXiv:1503.01084

  10. Crivellin A, D’Ambrosio G, Heeck J (2015) Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys Rev D 91:075006. https://doi.org/10.1103/PhysRevD.91.075006, arXiv:1503.03477

  11. Be\(\check{{\rm {c}}}\)irevi\(\acute{{\rm {c}}}\) D, Fajfer S, Ko\(\check{{\rm {s}}}\)nik N (2015) Lepton flavor nonuniversality in \(b \rightarrow s \mu ^+ \mu ^-\) processes. Phys Rev D 92:014016. https://doi.org/10.1103/PhysRevD.92.014016, arXiv:1503.09024

  12. Celis A, Fuentes-Martin J, Jung M, Ser\(\hat{{\rm {o}}}\)dio H (2015) Family nonuniversal \(Z^\prime \) models with protected flavor-changing interactions. Phys Rev D 92:015007. https://doi.org/10.1103/PhysRevD.92.015007, arXiv:1505.03079

  13. Alonso R, Grinstein B, Martin Camalich J (2015) Lepton universality violation and lepton flavor conservation in \(B\)-meson decays. JHEP 10:184. https://doi.org/10.1007/JHEP10(2015)184, arXiv:1505.05164

  14. Belanger G, Delaunay C, Westhoff S (2015) A dark matter relic from muon anomalies. Phys Rev D 92:055021. https://doi.org/10.1103/PhysRevD.92.055021, arXiv:1507.06660

  15. Falkowski A, Nardecchia M, Ziegler R (2015) Lepton flavor non-universality in B-meson decays from a U(2) flavor model. JHEP 11:173. https://doi.org/10.1007/JHEP11(2015)173, arXiv:1509.01249

  16. Gripaios B, Nardecchia M, Renner SA (2016) Linear flavour violation and anomalies in B physics. JHEP 06:083. https://doi.org/10.1007/JHEP06(2016)083, arXiv:1509.05020

  17. Bauer M, Neubert M (2016) Minimal Leptoquark explanation for the R\(_{D^{(*)}}\), R\(_K\), and \((g-2)_g\) anomalies. Phys Rev Lett 116:141802. https://doi.org/10.1103/PhysRevLett.116.141802, arXiv:1511.01900

  18. Fajfer S, Ko\(\check{{\rm {s}}}\)nik N (2016) Vector leptoquark resolution of \(R_K\) and \(R_{D^{(*)}}\) puzzles. Phys Lett B 755:270–274. https://doi.org/10.1016/j.physletb.2016.02.018, arXiv:1511.06024

    Article  ADS  Google Scholar 

  19. Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 12:059. https://doi.org/10.1007/JHEP12(2016)059, arXiv:1608.01349

  20. Arnan P, Hofer L, Mescia F, Crivellin A (2017) Loop effects of heavy new scalars and fermions in \(b\rightarrow s\mu ^+\mu ^-\). JHEP 04:043. https://doi.org/10.1007/JHEP04(2017)043, arXiv:1608.07832

  21. Be\(\check{{\rm {c}}}\)irevi\(\acute{{\rm {c}}}\) D, Fajfer S, Ko\(\check{{\rm {s}}}\)nik N, Sumensari O (2016) Leptoquark model to explain the \(B\)-physics anomalies, \(R_K\) and \(R_D\). Phys Rev D 94:115021. https://doi.org/10.1103/PhysRevD.94.115021, arXiv:1608.08501

  22. Crivellin A, Fuentes-Martin J, Greljo A, Isidori G (2017) Lepton flavor non-universality in B decays from dynamical Yukawas. Phys Lett B 766:77–85. https://doi.org/10.1016/j.physletb.2016.12.057, arXiv:1611.02703

    Article  ADS  Google Scholar 

  23. Garcia IG (2017) LHCb anomalies from a natural perspective. JHEP 03:040. https://doi.org/10.1007/JHEP03(2017)040, arXiv:1611.03507

  24. Cline JM (2018) \(B\) decay anomalies and dark matter from vectorlike confinement. Phys Rev D 97:015013. https://doi.org/10.1103/PhysRevD.97.015013, arXiv:1710.02140

  25. Baek S (2018) Dark matter contribution to \(b\rightarrow s \mu ^+ \mu ^-\) anomaly in local \(U(1)_{L_\mu -L_\tau }\) model. Phys Lett B 781:376–382. https://doi.org/10.1016/j.physletb.2018.04.012, arXiv:1707.04573

    Article  ADS  Google Scholar 

  26. Cline JM, Camalich JM (2017) \(B\) decay anomalies from nonabelian local horizontal symmetry. Phys Rev D 96:055036. https://doi.org/10.1103/PhysRevD.96.055036, arXiv:1706.08510

  27. Kawamura J, Okawa S, Omura Y (2017) Interplay between the \(b \rightarrow s\ell \ell \) anomalies and dark matter physics. Phys Rev D 96:075041. https://doi.org/10.1103/PhysRevD.96.075041, arXiv:1706.04344

  28. Di Chiara S, Fowlie A, Fraser S, Marzo C, Marzola L, Raidal M et al (2017) Minimal flavor-changing \(Z^{\prime }\) models and muon \(g-2\) after the \(R_{K^*}\) measurement. Nucl Phys B 923:245–257. https://doi.org/10.1016/j.nuclphysb.2017.08.003, arXiv:1704.06200

    Article  ADS  MATH  Google Scholar 

  29. Kamenik JF, Soreq Y, Zupan J (2018) Lepton flavor universality violation without new sources of quark flavor violation. Phys Rev D 97:035002. https://doi.org/10.1103/PhysRevD.97.035002, arXiv:1704.06005

  30. Crivellin A, Mller D, Ota T (2017) Simultaneous explanation of R(D\(^{(*)}\)) and \(b \rightarrow s \mu ^{+} \mu ^{-}\): the last scalar leptoquarks standing. JHEP 09:040. https://doi.org/10.1007/JHEP09(2017)040, arXiv:1703.09226

  31. Ko P, Omura Y, Shigekami Y, Yu C (2017) LHCb anomaly and B physics in flavored \(Z^\prime \) models with flavored Higgs doublets. Phys Rev D 95:115040. https://doi.org/10.1103/PhysRevD.95.115040, arXiv:1702.08666

  32. Ko P, Nomura T, Okada H (2017) Explaining \(B\rightarrow K^{(*)}\ell ^+ \ell ^-\) anomaly by radiatively induced coupling in \(U(1)_{\mu -\tau }\) gauge symmetry. Phys Rev D 95:111701. https://doi.org/10.1103/PhysRevD.95.111701, arXiv:1702.02699

  33. Di Luzio L, Greljo A, Nardecchia M (2017) Gauge leptoquark as the origin of B-physics anomalies. Phys Rev D 96:115011. https://doi.org/10.1103/PhysRevD.96.115011, arXiv:1708.08450

  34. ATLAS collaboration, Aad G et al (2016) Measurement of the CP-violating phase \(\phi _s\) and the \(B^0_s\) meson decay width difference with \(B^0_s \rightarrow J/\psi \phi \) decays in ATLAS. JHEP 08:147. https://doi.org/10.1007/JHEP08(2016)147, arXiv:1601.03297

  35. CMS collaboration, Khachatryan V et al (2016) Measurement of the CP-violating weak phase \(\phi _s\) and the decay width difference \(\Delta \Gamma _s\) using the B\(_s^0 \rightarrow J/\psi \phi \)(1020) decay channel in pp collisions at \(\sqrt{s}=\) 8 TeV. Phys Lett B 757:97–120. https://doi.org/10.1016/j.physletb.2016.03.046, arXiv:1507.07527

    Article  ADS  Google Scholar 

  36. LHCb collaboration, Aaij R et al (2015) Precision measurement of \(CP\) violation in \(B_s^0 \rightarrow J/\psi K^+K^-\) decays. Phys Rev Lett 114:041801. https://doi.org/10.1103/PhysRevLett.114.041801, arXiv:1411.3104

  37. LHCb collaboration, Aaij R et al (2014) Measurements of the \(B^+, B^0, B^0_s\) meson and \(\Lambda ^0_b\) baryon lifetimes. JHEP 04:114. https://doi.org/10.1007/JHEP04(2014)114, arXiv:1402.2554

  38. Bobeth C, Haisch U, Lenz A, Pecjak B, Tetlalmatzi-Xolocotzi G (2014) On new physics in \(\Delta \Gamma _{d}\). JHEP 06:040. https://doi.org/10.1007/JHEP06(2014)040, arXiv:1404.2531

  39. Bobeth C, Gorbahn M, Vickers S (2015) Weak annihilation and new physics in charmless \(B \rightarrow M M\) decays. Eur Phys J C 75:340. https://doi.org/10.1140/epjc/s10052-015-3535-1, arXiv:1409.3252

  40. Brod J, Lenz A, Tetlalmatzi-Xolocotzi G, Wiebusch M (2015) New physics effects in tree-level decays and the precision in the determination of the quark mixing angle \(\gamma \), Phys Rev D 92:033002. https://doi.org/10.1103/PhysRevD.92.033002, arXiv:1412.1446

  41. Bauer CW, Dunn ND (2011) Comment on new physics contributions to \(\Gamma _{12}^s\). Phys Lett B 696:362–366. https://doi.org/10.1016/j.physletb.2010.12.039, arXiv:1006.1629

    Article  ADS  Google Scholar 

  42. Lyon J, Zwicky R (2014) Resonances gone topsy turvy-the charm of QCD or new physics in \(b \rightarrow s \ell ^+ \ell ^-\)?. arXiv:1406.0566

  43. He XG, Tandean J, Valencia G (2009) Probing new physics in charm couplings with FCNC. Phys Rev D 80:035021. https://doi.org/10.1103/PhysRevD.80.035021, arXiv:0904.2301

  44. CLEO collaboration, Chen S et al (2001) Branching fraction and photon energy spectrum for \(b \rightarrow s \gamma \). Phys Rev Lett 87:251807. https://doi.org/10.1103/PhysRevLett.87.251807, arXiv:hep-ex/0108032

  45. Belle collaboration, Abe K et al (2001) A measurement of the branching fraction for the inclusive \(B \rightarrow X(s) \gamma \) decays with BELLE. Phys Lett B 511:151–158.https://doi.org/10.1016/S0370-2693(01)00626-8, arXiv:hep-ex/0103042

    Article  ADS  Google Scholar 

  46. BaBar collaboration, Aubert B et al (2008) Measurement of the \(B \rightarrow X_s \gamma \) branching fraction and photon energy spectrum using the recoil method. Phys Rev D 77:051103. https://doi.org/10.1103/PhysRevD.77.051103, arXiv:0711.4889

  47. Belle collaboration, Limosani A et al (2009) Measurement of inclusive radiative B-meson decays with a photon energy threshold of 1.7-GeV. Phys Rev Lett 103:241801. https://doi.org/10.1103/PhysRevLett.103.241801, arXiv:0907.1384

  48. BaBar collaboration, Lees JP et al (2012) Precision measurement of the \(B \rightarrow X_s \gamma \) photon energy spectrum, branching fraction, and direct CP asymmetry \(A_{CP}(B \rightarrow X_{s+d}\gamma )\). Phys Rev Lett 109:191801.https://doi.org/10.1103/PhysRevLett.109.191801, arXiv:1207.2690

  49. BaBar collaboration, Lees JP et al (2012) Measurement of B (\(B\rightarrow X_s \gamma \)), the \(B\rightarrow X_s \gamma \) photon energy spectrum, and the direct CP asymmetry in \(B\rightarrow X_{s+d} \gamma \) decays. Phys Rev D 86:112008. https://doi.org/10.1103/PhysRevD.86.112008, arXiv:1207.5772

  50. BaBar collaboration, Lees JP et al (2012) Exclusive measurements of \(b \rightarrow s\gamma \) transition rate and photon energy spectrum. Phys Rev D 86:052012. https://doi.org/10.1103/PhysRevD.86.052012, arXiv:1207.2520

  51. Belle collaboration, Saito T et al (2015) Measurement of the \(\bar{B} \rightarrow X_s \gamma \) branching fraction with a sum of exclusive decays. Phys Rev D 91:052004. https://doi.org/10.1103/PhysRevD.91.052004, arXiv:1411.7198

  52. Buras AJ, Misiak M, Urban J (2000) Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model. Nucl Phys B 586:397–426. https://doi.org/10.1016/S0550-3213(00)00437-5, arXiv:hep-ph/0005183

    Article  ADS  Google Scholar 

  53. Aoki S et al (2014) Review of lattice results concerning low-energy particle physics. Eur Phys J C 74:2890. https://doi.org/10.1140/epjc/s10052-014-2890-7, arXiv:1310.8555

  54. Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431. https://doi.org/10.1103/PhysRevD.54.4419, https://doi.org/10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259

  55. Dighe AS, Hurth T, Kim CS, Yoshikawa T (2002) Measurement of the lifetime difference of \(B_d\) mesons: possible and worthwhile? Nucl Phys B 624:377–404. https://doi.org/10.1016/S0550-3213(01)00655-1, arXiv:hep-ph/0109088

    Article  ADS  Google Scholar 

  56. Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (1999) Next-to-leading order QCD corrections to the lifetime difference of \(B_s\) mesons. Phys Lett B 459:631–640. https://doi.org/10.1016/S0370-2693(99)00684-X, arXiv:hep-ph/9808385

    Article  ADS  Google Scholar 

  57. Beneke M, Buchalla G, Lenz A, Nierste U (2003) CP asymmetry in flavor specific B decays beyond leading logarithms. Phys Lett B 576:173–183. https://doi.org/10.1016/j.physletb.2003.09.089, arXiv:hep-ph/0307344

    Article  ADS  Google Scholar 

  58. Ciuchini M, Franco E, Lubicz V, Mescia F, Tarantino C (2003) Lifetime differences and CP violation parameters of neutral B mesons at the next-to-leading order in QCD. JHEP 08:031. https://doi.org/10.1088/1126-6708/2003/08/031, arXiv:hep-ph/0308029

    Article  Google Scholar 

  59. Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072. https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167

    Article  Google Scholar 

  60. Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236. https://doi.org/10.1016/S0550-3213(02)00262-6, arXiv:hep-ph/0203089

    Article  ADS  Google Scholar 

  61. HFLAV collaboration (2016) B lifetime and oscillation parameters. Spring 2016. http://www.slac.stanford.edu/xorg/hflav/osc/spring_2016/

  62. HFLAV collaboration (2017) B lifetime and oscillation parameters. Summer 2017. http://www.slac.stanford.edu/xorg/hflav/osc/summer_2017/

  63. Chetyrkin KG, Misiak M, Munz M (1997) Weak radiative B meson decay beyond leading logarithms. Phys Lett B 400:206–219. https://doi.org/10.1016/S0370-2693(97)00324-9, arXiv:hep-ph/9612313

    Article  ADS  Google Scholar 

  64. Gaillard MK, Lee BW (1974) \(\Delta I = 1/2\) rule for nonleptonic decays in asymptotically free field theories. Phys Rev Lett 33:108. https://doi.org/10.1103/PhysRevLett.33.108

    Article  ADS  Google Scholar 

  65. Altarelli G, Maiani L (1974) Octet enhancement of nonleptonic weak interactions in asymptotically free gauge theories. Phys Lett B 52:351–354. https://doi.org/10.1016/0370-2693(74)90060-4

    Article  ADS  Google Scholar 

  66. Gilman FJ, Wise MB (1979) Effective Hamiltonian for \(\Delta S = 1\) weak nonleptonic decays in the six quark model. Phys Rev D 20:2392. https://doi.org/10.1103/PhysRevD.20.2392

    Article  ADS  Google Scholar 

  67. Shifman MA, Vainshtein AI, Zakharov VI (1977) Nonleptonic decays of K mesons and hyperons. Sov Phys JETP 45:670

    Google Scholar 

  68. Gilman FJ, Wise MB (1980) \(K \rightarrow \pi e^+ e^-\) in the six quark model. Phys Rev D 21:3150. https://doi.org/10.1103/PhysRevD.21.3150

    Article  ADS  Google Scholar 

  69. Guberina B, Peccei RD (1980) Quantum chromodynamic effects and CP violation in the Kobayashi-Maskawa model. Nucl Phys B 163:289–311. https://doi.org/10.1016/0550-3213(80)90404-6

    Article  ADS  Google Scholar 

  70. Ciuchini M, Franco E, Martinelli G, Reina L, Silvestrini L (1993) Scheme independence of the effective Hamiltonian for \(b \rightarrow s \gamma \) and \(b \rightarrow s g\) decays. Phys Lett B 316:127–136. https://doi.org/10.1016/0370-2693(93)90668-8, arXiv:hep-ph/9307364

    Article  ADS  Google Scholar 

  71. Ciuchini M, Franco E, Martinelli G, Reina L, Silvestrini L (1994) \(b \rightarrow s \gamma \) and \(b \rightarrow s g\): a theoretical reappraisal. Phys Lett B 334:137–144. https://doi.org/10.1016/0370-2693(94)90602-5, arXiv:hep-ph/9406239

    Article  ADS  Google Scholar 

  72. Ciuchini M, Franco E, Reina L, Silvestrini L (1994) Leading order QCD corrections to \(b \rightarrow s \gamma \) and \(b \rightarrow s g\) decays in three regularization schemes. Nucl Phys B 421:41–64. https://doi.org/10.1016/0550-3213(94)90223-2, arXiv:hep-ph/9311357

    Article  ADS  Google Scholar 

  73. Bertolini S, Borzumati F, Masiero A (1987) QCD enhancement of radiative b decays. Phys Rev Lett 59:180. https://doi.org/10.1103/PhysRevLett.59.180

    Article  ADS  Google Scholar 

  74. Grinstein B, Springer RP, Wise MB (1988) Effective Hamiltonian for weak radiative B meson decay. Phys Lett B 202:138–144. https://doi.org/10.1016/0370-2693(88)90868-4

    Article  ADS  Google Scholar 

  75. Grinstein B, Springer RP, Wise MB (1990) Strong interaction effects in weak radiative \(\bar{B}\) meson decay. Nucl Phys B 339:269–309. https://doi.org/10.1016/0550-3213(90)90350-M

    Article  ADS  Google Scholar 

  76. Misiak M (1991) QCD corrected effective Hamiltonian for the \(b \rightarrow s \gamma \) decay. Phys Lett B 269:161–168. https://doi.org/10.1016/0370-2693(91)91469-C

    Article  ADS  Google Scholar 

  77. Chetyrkin KG, Misiak M, Munz M (1998) Beta functions and anomalous dimensions up to three loops. Nucl Phys B 518:473–494. https://doi.org/10.1016/S0550-3213(98)00122-9, arXiv:hep-ph/9711266

    Article  ADS  MATH  Google Scholar 

  78. Misiak M et al (2015) Updated NNLO QCD predictions for the weak radiative B-meson decays. Phys Rev Lett 114:221801. https://doi.org/10.1103/PhysRevLett.114.221801, arXiv:1503.01789

  79. HFLAV collaboration (2014) Rare B decay parameters. http://www.slac.stanford.edu/xorg/hflav/rare/2014/radll/OUTPUT/HTML/radll_table3.html

  80. Hiller G, Kruger F (2004) More model-independent analysis of \(b \rightarrow s\) processes. Phys Rev D 69:074020. https://doi.org/10.1103/PhysRevD.69.074020, arXiv:hep-ph/0310219

  81. LHCb collaboration, Aaij R et al (2014) Test of lepton universality using \(B^{+}\rightarrow K^{+}\ell ^{+}\ell ^{-}\) decays. Phys Rev Lett 113:151601. https://doi.org/10.1103/PhysRevLett.113.151601, arXiv:1406.6482

  82. LHCb collaboration, Aaij R et al (2017) Test of lepton universality with \(B^{0} \rightarrow K^{*0}\ell ^{+}\ell ^{-}\) decays. JHEP 08:055. https://doi.org/10.1007/JHEP08(2017)055, arXiv:1705.05802

  83. LHCb collaboration, Aaij R et al (2018) Measurement of the ratio of branching fractions \(\cal{B}(B_c^+\,\rightarrow \,J/\psi \tau ^+\nu _\tau )\)/\(\cal{B}(B_c^+\,\rightarrow \,J/\psi \mu ^+\nu _\mu )\). Phys Rev Lett 120:121801. https://doi.org/10.1103/PhysRevLett.120.121801, arXiv:1711.05623

  84. Geng LS, Grinstein B, J\(\ddot{{\rm {a}}}\)ger S, Camalich JM, Ren X-L, Shi R-X (2017) Towards the discovery of new physics with lepton-universality ratios of \(b\rightarrow s\ell \ell \) decays. Phys Rev D 96:093006. https://doi.org/10.1103/PhysRevD.96.093006, arXiv:1704.05446

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Kirk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirk, M.J. (2019). Charming New Physics in Rare \(B_{s}\) Decays and Mixing?. In: Charming New Physics in Beautiful Processes?. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19197-9_5

Download citation

Publish with us

Policies and ethics