Skip to main content

Charming Dark Matter

  • Chapter
  • First Online:
Book cover Charming New Physics in Beautiful Processes?

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As discussed in Sect. 1.3.1, dark matter has a long history, but the interactions of DM (outside of its gravitational influence) remain elusive, despite concerted efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not include the cuts on the parameters \(am_{T2}\) and \(m^\tau _{T2}\). From the published cut flows it can be seen that the effect of these cuts is of the order 10% and 2% respectively (although the former cut can have a more pronounced effect \({\sim }{30}{\%}\) on the tN_med cut choice).

References

  1. Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90: 045002. https://doi.org/10.1103/RevModPhys.90.045002, arXiv:1605.04909

  2. Particle Data Group collaboration, Dark Matter. http://pdg.lbl.gov/2017/reviews/rpp2017-rev-dark-matter.pdf

  3. Springel V et al (2005) Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435:629–636. https://doi.org/10.1038/nature03597. arXiv:astro-ph/0504097

    Article  ADS  Google Scholar 

  4. Abdallah J et al (2014) Simplified Models for Dark Matter and Missing Energy Searches at the LHC. arXiv:1409.2893

  5. LHC New Physics Working Group collaboration, Alves D (2012) Simplified models for LHC new physics searches. J Phys G 39:105005. https://doi.org/10.1088/0954-3899/39/10/105005. arXiv:1105.2838

    Article  ADS  Google Scholar 

  6. Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020. https://doi.org/10.1103/PhysRevD.79.075020. arXiv:0810.3921

    Article  ADS  Google Scholar 

  7. ATLAS collaboration, Aaboud M et al. (2016) Search for new phenomena in events with a photon and missing transverse momentum in  \(pp\) collisions at  \(\sqrt{s}=13\) TeV with the ATLAS detector. JHEP 06:059. https://doi.org/10.1007/JHEP06(2016)059, arXiv:1604.01306

  8. De Simone A, Jacques T (2016) Simplified models vs. effective field theory approaches in dark matter searches. Eur Phys J C 76:367. https://doi.org/10.1140/epjc/s10052-016-4208-4, arXiv:1603.08002

  9. Goodman J, Shepherd W (2011) LHC bounds on UV-complete models of dark matter. arXiv:1111.2359

  10. Dreiner H, Schmeier D, Tattersall J (2013) Contact interactions probe effective dark matter models at the LHC. EPL 102:51001. https://doi.org/10.1209/0295-5075/102/51001. arXiv:1303.3348

    Article  ADS  Google Scholar 

  11. Abercrombie D et al (2015) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. arXiv:1507.00966

  12. Busoni G et al (2016) Recommendations on presenting LHC searches for missing transverse energy signals using simplified \(s\)-channel models of dark matter. arXiv:1603.04156

  13. Goncalves D, Machado PAN, No JM (2017) Simplified models for dark matter face their consistent completions. Phys Rev D 95:055027. https://doi.org/10.1103/PhysRevD.95.055027, arXiv:1611.04593

  14. Kahlhoefer F, Schmidt-Hoberg K, Schwetz T, Vogl S (2016) Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 02:016. https://doi.org/10.1007/JHEP02(2016)016, arXiv:1510.02110

  15. Englert C, McCullough M, Spannowsky M (2016) S-channel dark matter simplified models and unitarity. Phys Dark Univ 14:48–56. https://doi.org/10.1016/j.dark.2016.09.002, arXiv:1604.07975

    Article  ADS  Google Scholar 

  16. Buras AJ, Gambino P, Gorbahn M, Jäger S, Silvestrini L (2001) Universal unitarity triangle and physics beyond the standard model. Phys Lett B 500:161–167. https://doi.org/10.1016/S0370-2693(01)00061-2. arXiv:hep-ph/0007085

    Article  ADS  Google Scholar 

  17. D’Ambrosio G, Giudice GF, Isidori G, Strumia A (2002) Minimal flavor violation: an effective field theory approach. Nucl Phys B 645:155–187. https://doi.org/10.1016/S0550-3213(02)00836-2. arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  18. Agrawal P, Blanke M, Gemmler K (2014) Flavored dark matter beyond minimal flavor violation. JHEP 10:72. https://doi.org/10.1007/JHEP10(2014)072. arXiv:1405.6709

    Article  ADS  Google Scholar 

  19. Chen M-C, Huang J, Takhistov V (2016) Beyond minimal lepton flavored dark matter. JHEP 02:060. https://doi.org/10.1007/JHEP02(2016)060, arXiv:1510.04694

  20. Blanke M, Kast S (2017) Top-flavoured dark matter in dark minimal flavour violation. JHEP 05:162. https://doi.org/10.1007/JHEP05(2017)162, arXiv:1702.08457

  21. Baek S, Ko P, Wu P (2018) Heavy quark-philic scalar dark matter with a vector-like fermion portal. JCAP 1807:008. https://doi.org/10.1088/1475-7516/2018/07/008, arXiv:1709.00697

    Article  Google Scholar 

  22. Agrawal P, Blanchet S, Chacko Z, Kilic C (2012) Flavored dark matter, and its implications for direct detection and colliders. Phys Rev D 86:055002. https://doi.org/10.1103/PhysRevD.86.055002. arXiv:1109.3516

    Article  ADS  Google Scholar 

  23. Kilic C, Klimek MD, Yu J-H (2015) Signatures of top flavored dark matter. Phys Rev D 91:054036. https://doi.org/10.1103/PhysRevD.91.054036, arXiv:1501.02202

  24. Bhattacharya B, London D, Cline JM, Datta A, Dupuis G (2015) Quark-flavored scalar dark matter. Phys Rev D 92:115012. https://doi.org/10.1103/PhysRevD.92.115012, arXiv:1509.04271

  25. Peskin ME, Takeuchi T (1990) A new constraint on a strongly interacting Higgs sector. Phys Rev Lett 65:964–967. https://doi.org/10.1103/PhysRevLett.65.964

    Article  ADS  Google Scholar 

  26. Peskin ME, Takeuchi T (1992) Estimation of oblique electroweak corrections. Phys Rev D 46:381–409. https://doi.org/10.1103/PhysRevD.46.381

    Article  ADS  Google Scholar 

  27. Grimus W, Lavoura L, Ogreid OM, Osland P (2008) The oblique parameters in multi-Higgs-doublet models. Nucl Phys B 801:81–96. https://doi.org/10.1016/j.nuclphysb.2008.04.019. arXiv:0802.4353

    Article  ADS  MATH  Google Scholar 

  28. Isidori G, Straub DM (2012) Minimal flavour violation and beyond. Eur Phys J C 72:2103. https://doi.org/10.1140/epjc/s10052-012-2103-1. arXiv:1202.0464

    Article  ADS  Google Scholar 

  29. Batell B, Pradler J, Spannowsky M (2011) Dark matter from minimal flavor violation. JHEP 08:038. https://doi.org/10.1007/JHEP08(2011)038. arXiv:1105.1781

    Article  ADS  MATH  Google Scholar 

  30. Shape Planck collaboration, Ade PAR, Planck, et al (2015) results (2016) Cosmological parameters, XIII. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589

  31. Griest K, Seckel D (1991) Three exceptions in the calculation of relic abundances. Phys Rev D 43:3191–3203. https://doi.org/10.1103/PhysRevD.43.3191

    Article  ADS  Google Scholar 

  32. Busoni G, De Simone A, Jacques T, Morgante E, Riotto A (2015) Making the most of the relic density for dark matter searches at the LHC 14 TeV run. JCAP 1503:022. https://doi.org/10.1088/1475-7516/2015/03/022. arXiv:1410.7409

    Article  ADS  Google Scholar 

  33. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rept 405:279–390. https://doi.org/10.1016/j.physrep.2004.08.031. arXiv:hep-ph/0404175

    Article  ADS  Google Scholar 

  34. Gondolo P, Gelmini G (1991) Cosmic abundances of stable particles: improved analysis. Nucl Phys B 360:145–179. https://doi.org/10.1016/0550-3213(91)90438-4

    Article  ADS  Google Scholar 

  35. HFLAV collaboration, Global Fit for \(D^{0}-{\bar{D}^{0}}\) Mixing, CKM16. http://www.slac.stanford.edu/xorg/hflav/charm/CKM16/results_mix_cpv.html

  36. Golowich E, Hewett J, Pakvasa S, Petrov AA (2007) Implications of \(D^0\) - \(\bar{D}^0\) mixing for new physics. Phys Rev D 76:095009. https://doi.org/10.1103/PhysRevD.76.095009. arXiv:0705.3650

    Article  ADS  Google Scholar 

  37. Aoki S, et al. (2017) Review of lattice results concerning low-energy particle physics. Eur Phys J C 77:112. https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299

  38. Na H, Davies CTH, Follana E, Lepage GP, Shigemitsu J (2012) \(|V_{cd}|\) from D Meson Leptonic Decays. Phys Rev D 86:054510. https://doi.org/10.1103/PhysRevD.86.054510. arXiv:1206.4936

    Article  ADS  Google Scholar 

  39. Fermilab Lattice MILC, collaboration, Bazavov A, et al (2012) B- and D-meson decay constants from three-flavor lattice QCD. Phys Rev D 85:114506. https://doi.org/10.1103/PhysRevD.85.114506. arXiv:1112.3051

  40. Carrasco N et al (2014) \(D^0\) - \(\bar{D}^0\) mixing in the standard model and beyond from \(N_f\) =2 twisted mass QCD. Phys Rev D 90:014502. https://doi.org/10.1103/PhysRevD.90.014502. arXiv:1403.7302

    Article  ADS  Google Scholar 

  41. Fajfer S, Košnik N (2015) Prospects of discovering new physics in rare charm decays. Eur Phys J C 75:567https://doi.org/10.1140/epjc/s10052-015-3801-2, arXiv:1510.00965

  42. CMS collaboration, Khachatryan V, et al. (2016) Search for anomalous single top quark production in association with a photon in pp collisions at  \( \sqrt{s}=8 \)  TeV. JHEP 04:035. https://doi.org/10.1007/JHEP04(2016)035, arXiv:1511.03951

    Google Scholar 

  43. LUX collaboration, Akerib DS, et al (2014) First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett 112:091303. https://doi.org/10.1103/PhysRevLett.112.091303. arXiv:1310.8214

  44. LUX collaboration, Akerib DS, et al. (2016) Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data. Phys Rev Lett 116:161301. https://doi.org/10.1103/PhysRevLett.116.161301, arXiv:1512.03506

  45. SuperCDMS collaboration, Agnese R, et al. (2016) New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment. Phys Rev Lett 116:071301. https://doi.org/10.1103/PhysRevLett.116.071301, arXiv:1509.02448

  46. Crivellin A, D’Eramo F, Procura M (2014) New constraints on dark matter effective theories from standard model loops. Phys Rev Lett 112:191304. https://doi.org/10.1103/PhysRevLett.112.191304. arXiv:1402.1173

    Article  ADS  Google Scholar 

  47. D’Eramo F, Procura M (2015) Connecting dark matter UV complete models to direct detection rates via effective field theory. JHEP 04:054. https://doi.org/10.1007/JHEP04(2015)054. arXiv:1411.3342

    Article  ADS  Google Scholar 

  48. Fitzpatrick AL, Haxton W, Katz E, Lubbers N, Xu Y (2013) The effective field theory of dark matter direct detection. JCAP 1302:004. https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542

    Article  ADS  Google Scholar 

  49. Ibarra A, Wild S (2015) Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology. JCAP 1505:047. https://doi.org/10.1088/1475-7516/2015/05/047, arXiv:1503.03382

    Article  Google Scholar 

  50. Kahlhoefer F, Wild S (2016) Studying generalised dark matter interactions with extended halo-independent methods. JCAP 1610:032. https://doi.org/10.1088/1475-7516/2016/10/032, arXiv:1607.04418

    Article  Google Scholar 

  51. Drees M, Nojiri M (1993) Neutralino-nucleon scattering revisited. Phys Rev D 48:3483–3501. https://doi.org/10.1103/PhysRevD.48.3483. arXiv:hep-ph/9307208

    Article  ADS  Google Scholar 

  52. Hisano J, Nagai R, Nagata N (2015) Effective Theories for Dark Matter Nucleon Scattering. JHEP 05: 037.https://doi.org/10.1007/JHEP05(2015)037, arXiv:1502.02244

  53. Gondolo P, Scopel S (2013) On the sbottom resonance in dark matter scattering. JCAP 1310:032. https://doi.org/10.1088/1475-7516/2013/10/032. arXiv:1307.4481

    Article  ADS  Google Scholar 

  54. XENON collaboration, Aprile E, et al. (2017) First dark matter search results from the XENON1T experiment. Phys Rev Lett 119:181301. https://doi.org/10.1103/PhysRevLett.119.181301, arXiv:1705.06655

  55. PandaX-II collaboration, Cui X, et al. (2017) Dark matter results from 54-Ton-Day exposure of PandaX-II experiment. Phys Rev Lett 119:181302. https://doi.org/10.1103/PhysRevLett.119.181302, arXiv:1708.06917

  56. Cirelli M, Corcella G, Hektor A, Hutsi G, Kadastik M, Panci P et al (2011) PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. JCAP 1103:051. https://doi.org/10.1088/1475-7516/2012/10/E01, https://doi.org/10.1088/1475-7516/2011/03/051. arXiv:1012.4515

  57. MAGIC, Fermi-LAT collaboration, Rico J, Wood M, Drlica-Wagner A, Aleksić J (2016) Limits to dark matter properties from a combined analysis of MAGIC and  \(Fermi\)-LAT observations of dwarf satellite galaxies. PoS ICRC 2015 1206. https://doi.org/10.22323/1.236.1206, arXiv:1508.05827

  58. Boudaud M (2015) A fussy revisitation of antiprotons as a tool for Dark Matter searches. arXiv:1510.07500

  59. Di Mauro M, Vittino A (2016) AMS-02 electrons and positrons: astrophysical interpretation and Dark Matter constraints. PoS ICRC 2015 1177. https://doi.org/10.22323/1.236.1177, arXiv:1507.08680

  60. IceCube collaboration, Aartsen MG, et al. (2016) All-flavour search for neutrinos from Dark Matter annihilations in the milky way with icecube/deepcore. Eur Phys J C 76:531. https://doi.org/10.1140/epjc/s10052-016-4375-3, arXiv:1606.00209

  61. H.E.S.S. collaboration, Lefranc V, Moulin E (2016) Dark matter search in the inner Galactic halo with H.E.S.S. I and H.E.S.S. II. PoS ICRC 2015 1208. https://doi.org/10.22323/1.236.1208, arXiv:1509.04123

  62. Fermi-LAT collaboration, Ackermann M, et al. (2015) Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT. Astrophys J 812:159. https://doi.org/10.1088/0004-637X/812/2/159, arXiv:1510.00004

    Article  ADS  Google Scholar 

  63. Hahn T, Perez-Victoria M (1999) Automatized one loop calculations in four-dimensions and D-dimensions. Comput Phys Commun 118:153–165. https://doi.org/10.1016/S0010-4655(98)00173-8. arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  64. Busoni G, De Simone A, Jacques T, Morgante E, Riotto A (2014) On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the \(t\)-channel. JCAP 1409:022. https://doi.org/10.1088/1475-7516/2014/09/022. arXiv:1405.3101

    Article  ADS  Google Scholar 

  65. ATLAS collaboration, Aad G, et al. (2015) Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at  \(\sqrt{s}=\) 8 TeV with the ATLAS detector. Eur Phys J C 75:299. https://doi.org/10.1140/epjc/s10052-015-3517-3, https://doi.org/10.1140/epjc/s10052-015-3639-7, arXiv:1502.01518

  66. Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O et al (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079. https://doi.org/10.1007/JHEP07(2014)079. arXiv:1405.0301

    Article  ADS  MATH  Google Scholar 

  67. ATLAS collaboration, Aaboud M, et al. (2016) Search for new phenomena in final states with an energetic jet and large missing transverse momentum in  \(pp\)  collisions at  \(\sqrt{s}=13\)  TeV using the ATLAS detector. Phys Rev D 94:032005. https://doi.org/10.1103/PhysRevD.94.032005, arXiv:1604.07773

  68. CMS collaboration, Khachatryan V, et al (2015) Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s} = 8\) TeV. Eur Phys J C 75:235. https://doi.org/10.1140/epjc/s10052-015-3451-4. arXiv:1408.3583

  69. ATLAS collaboration, Aad G, et al (2014) Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s}=8\) TeV proton-proton collision data. JHEP 09:176. https://doi.org/10.1007/JHEP09(2014)176. arXiv:1405.7875

  70. ATLAS collaboration, Aaboud M, et al. (2016) Search for squarks and gluinos in final states with jets and missing transverse momentum at  \(\sqrt{s} =\)  13 TeV with the ATLAS detector. Eur Phys J C 76:392. https://doi.org/10.1140/epjc/s10052-016-4184-8, arXiv:1605.03814

  71. ATLAS collaboration, Aad G, et al (2014) Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} =\) 8 TeV \(pp\) collisions with the ATLAS detector. JHEP 11:118. https://doi.org/10.1007/JHEP11(2014)118. arXiv:1407.0583

  72. ATLAS collaboration, Aad G, et al. (2015) Search for scalar charm quark pair production in  \(pp\)  collisions at  \(\sqrt{s}=\)  8 TeV with the ATLAS detector. Phys Rev Lett 114:161801. https://doi.org/10.1103/PhysRevLett.114.161801, arXiv:1501.01325

  73. Feroz F, Hobson MP (2008) Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon Not R Astron Soc 384:449. https://doi.org/10.1111/j.1365-2966.2007.12353.x. arXiv:0704.3704

    Article  ADS  Google Scholar 

  74. Feroz F, Hobson MP, Bridges M (2009) MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon Not R Astron Soc 398:1601–1614. https://doi.org/10.1111/j.1365-2966.2009.14548.x. arXiv:0809.3437

    Article  ADS  Google Scholar 

  75. Feroz F, Hobson MP, Cameron E, Pettitt AN, Importance nested sampling and the multinest algorithm. arXiv:1306.2144

  76. Buchner J, Georgakakis A, Nandra K, Hsu L, Rangel C, Brightman M et al (2014) X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron Astrophys 564:A125. https://doi.org/10.1051/0004-6361/201322971. arXiv:1402.0004

    Article  ADS  Google Scholar 

  77. Fowlie A, Bardsley MH (2016) Superplot: a graphical interface for plotting and analysing MultiNest output. Eur Phys J Plus 131:391. https://doi.org/10.1140/epjp/i2016-16391-0, arXiv:1603.00555

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Kirk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirk, M.J. (2019). Charming Dark Matter. In: Charming New Physics in Beautiful Processes?. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19197-9_4

Download citation

Publish with us

Policies and ethics