Skip to main content

Quark-Hadron Duality

  • Chapter
  • First Online:
Charming New Physics in Beautiful Processes?

Part of the book series: Springer Theses ((Springer Theses))

  • 291 Accesses

Abstract

In Chap. 1 we discussed how flavour physics is an ideal testing ground for searches for new physics, as there are many observables which are highly suppressed in the SM but could easily be enhanced by new physics, as well as many observables for which a high experimental precision is available—meson mixing observables satisfy both these criteria. In order to make use of this fact, we must be sure that hadronic uncertainties are under control in our theoretical calculations, as otherwise we cannot tell for certain if we are seeing anything new.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of duality was already used in 1970 for electron proton scattering by Bloom and Gilman [2, 3].

  2. 2.

    This is twice the scale one finds in \(\Delta \Gamma _s\), where \(\Lambda {/}m_b \approx 1/5\) [6].

  3. 3.

    Similar models have been used in [34,35,36] for penguin insertions with a -loop.

  4. 4.

    A numerical analysis with these new inputs was already performed in [40], but the authors put emphasis on the implications for the correlation between \(\Delta M _{s,d}\) and \(\varepsilon _K\) in models with constrained MFV and the implications for \(\Delta \Gamma _{s,d}\) were not been analysed.

  5. 5.

    \(R_0\) is a \(1/m_b\) suppressed operator which is a linear combination of \(\mathcal {O} _{1,2,3}\) [28, 41].

References

  1. Poggio EC, Quinn HR, Weinberg S (1976) Smearing the quark model. Phys Rev D 13:1958. https://doi.org/10.1103/PhysRevD.13.1958

    Article  ADS  Google Scholar 

  2. Bloom ED, Gilman FJ (1970) Scaling, duality, and the behavior of resonances in inelastic electron-proton scattering. Phys Rev Lett 25:1140. https://doi.org/10.1103/PhysRevLett.25.1140

    Article  ADS  Google Scholar 

  3. Bloom ED, Gilman FJ (1971) Scaling and the behavior of nucleon resonances in inelastic electron-nucleon scattering. Phys Rev D 4:2901. https://doi.org/10.1103/PhysRevD.4.2901

    Article  ADS  Google Scholar 

  4. Shifman MA (2001) Quark hadron duality. In: At the frontier of particle physics. Handbook of QCD, vol 1–3 (Singapore), pp 1447–1494, World Scientific. https://doi.org/10.1142/9789812810458_0032, arXiv:hep-ph/0009131

    Chapter  Google Scholar 

  5. Bigi IIY, Uraltsev N (2001) A Vademecum on quark hadron duality. Int J Mod Phys A 16:5201–5248. https://doi.org/10.1142/S0217751X01005535, arXiv:hep-ph/0106346

    Article  ADS  MATH  Google Scholar 

  6. Lenz AJ (2011) A simple relation for \(B_s\) mixing. Phys Rev D 84:031501. https://doi.org/10.1103/PhysRevD.84.031501, arXiv:1106.3200

  7. Grinstein B (2001) Global duality in heavy flavor decays in the ’t Hooft model. Phys Rev D 64:094004. https://doi.org/10.1103/PhysRevD.64.094004, arXiv:hep-ph/0106205

  8. Grinstein B (2001) Non-local duality in B decays in the t’Hooft model. PoS HEP 099

    Google Scholar 

  9. Lebed RF, Uraltsev NG (2000) Precision studies of duality in the ’t Hooft model. Phys Rev D 62:094011. https://doi.org/10.1103/PhysRevD.62.094011, arXiv:hep-ph/0006346

  10. Bigi IIY, Shifman MA, Uraltsev N, Vainshtein AI (1999) Heavy flavor decays, OPE and duality in two-dimensional ’t Hooft model. Phys Rev D 59:054011. https://doi.org/10.1103/PhysRevD.59.054011. arXiv:hep-ph/9805241

    Article  ADS  Google Scholar 

  11. Shifman MA, Voloshin MB (1986) Hierarchy of lifetimes of charmed and beautiful hadrons. Sov Phys JETP 64:698

    Google Scholar 

  12. Lenz A (2015) Lifetimes and heavy quark expansion. Int J Mod Phys A 30:1543005. https://doi.org/10.1142/S0217751X15430058. arXiv:1405.3601

    Article  ADS  Google Scholar 

  13. Altarelli G, Martinelli G, Petrarca S, Rapuano F (1996) Failure of local duality in inclusive nonleptonic heavy flavor decays. Phys Lett B 382:409–414. https://doi.org/10.1016/0370-2693(96)00637-5, arXiv:hep-ph/9604202

    Article  ADS  Google Scholar 

  14. Uraltsev NG (1996) On the problem of boosting nonleptonic b baryon decays. Phys Lett B 376:303–308. https://doi.org/10.1016/0370-2693(96)00305-X, arXiv:hep-ph/9602324

    Article  ADS  Google Scholar 

  15. Neubert M, Sachrajda CT (1997) Spectator effects in inclusive decays of beauty hadrons. Nucl Phys B 483:339–370. https://doi.org/10.1016/S0550-3213(96)00559-7, arXiv:hep-ph/9603202

    Article  ADS  Google Scholar 

  16. LHCB collaboration, Aaij R et al (2013) Precision measurement of the \(\Lambda _b\) baryon lifetime. Phys Rev Lett 111:102003. https://doi.org/10.1103/PhysRevLett.111.102003, arXiv:1307.2476

  17. LHCB collaboration, Aaij R etal (2014) Precision measurement of the ratio of the \(\Lambda ^0_b\) to \(\overline{B}^0\) lifetimes. Phys Lett B 734:122–130. https://doi.org/10.1016/j.physletb.2014.05.021, arXiv:1402.6242

    Article  ADS  Google Scholar 

  18. LHCB collaboration, Aaij R et al (2014) Measurements of the \(B^+, B^0, B^0_s\) meson and \(\Lambda ^0_b\) baryon lifetimes. JHEP 04:114. https://doi.org/10.1007/JHEP04(2014)114, arXiv:1402.2554

  19. Bigi IIY, Blok B, Shifman MA, Vainshtein AI (1994) The baffling semileptonic branching ratio of B mesons. Phys Lett B 323:408–416. https://doi.org/10.1016/0370-2693(94)91239-4, arXiv:hep-ph/9311339

    Article  ADS  Google Scholar 

  20. Falk AF, Wise MB, Dunietz I (1995) Inconclusive inclusive nonleptonic \(B\) decays. Phys Rev D 51:1183–1191. https://doi.org/10.1103/PhysRevD.51.1183, arXiv:hep-ph/9405346

    Article  ADS  Google Scholar 

  21. Buchalla G, Dunietz I, Yamamoto H (1995) Hadronization of \(b \rightarrow c \bar{c} s\). Phys Lett B 364:188–194. https://doi.org/10.1016/0370-2693(95)01296-6, arXiv:hep-ph/9507437

    Article  ADS  Google Scholar 

  22. Lenz A (2000) Some comments on the missing charm puzzle. In: Heavy flavours and CP violation. Proceedings, 8th UK Phenomenology workshop, Durham, UK, September 19–24, 2000. arXiv:hep-ph/0011258

  23. Krinner F, Lenz A, Rauh T (2013) The inclusive decay \(b \rightarrow c\bar{c}s\) revisited. Nucl Phys B 876:31–54. https://doi.org/10.1016/j.nuclphysb.2013.07.028, arXiv:1305.5390

    Article  ADS  MATH  Google Scholar 

  24. Czarnecki A, Slusarczyk M, Tkachov FV (2006) Enhancement of the hadronic b quark decays. Phys Rev Lett 96:171803. https://doi.org/10.1103/PhysRevLett.96.171803, arXiv:hep-ph/0511004

  25. HFLAV collaboration. https://hflav.web.cern.ch

  26. Lenz A (2012) Theoretical update of \(B\)-mixing and lifetimes. In: 2012 electroweak interactions and unified theories: proceedings of the 47th Rencontres de Moriond on electroweak interactions and unified theories, La Thuile, March 3–10, 2012. arXiv:1205.1444, https://inspirehep.net/record/1113760/files/arXiv:1205.1444.pdf

  27. Artuso M, Borissov G, Lenz A (2016) CP violation in the \(B_s^0\) system. Rev Mod Phys 88:045002. https://doi.org/10.1103/RevModPhys.88.045002, arXiv:1511.09466

  28. Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072. https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167

    Article  Google Scholar 

  29. Lenz A, Nierste U (2011) Numerical updates of lifetimes and mixing parameters of B mesons. In: CKM unitarity triangle. Proceedings, 6th international workshop, CKM 2010, Warwick, UK, September 6–10, 2010. arXiv:1102.4274, http://inspirehep.net/record/890169/files/arXiv:1102.4274.pdf

  30. Heavy Flavor Averaging Group (HFAG) collaboration, Amhis Y et al (2014) Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2014. arXiv:1412.7515

  31. HFLAV collaboration, B lifetime and oscillation parameters, summer 2015. http://www.slac.stanford.edu/xorg/hflav/osc/summer_2015/

  32. LHCB collaboration, Aaij R et al (2016) Measurement of the \(CP\) asymmetry in \(B_s^0-\overline{B}{}_s^0\)mixing. Phys Rev Lett 117:061803. https://doi.org/10.1103/PhysRevLett.118.129903,10.1103/PhysRevLett.117.061803, arXiv:1605.09768

  33. Beneke M, Buchalla G, Lenz A, Nierste U (2003) CP asymmetry in flavor specific B decays beyond leading logarithms. Phys Lett B 576:173–183. https://doi.org/10.1016/j.physletb.2003.09.089, arXiv:hep-ph/0307344

    Article  ADS  Google Scholar 

  34. Palmer WF, Stech B (1993) Inclusive nonleptonic decays of B and D mesons. Phys Rev D 48:4174–4182. https://doi.org/10.1103/PhysRevD.48.4174

    Article  ADS  Google Scholar 

  35. Dunietz I, Incandela J, Snider FD, Yamamoto H (1998) Large charmless yield in B decays and inclusive B decay puzzles. Eur Phys J C 1:211–219. https://doi.org/10.1007/BF01245810, arXiv:hep-ph/9612421

    Article  ADS  Google Scholar 

  36. Lenz A, Nierste U, Ostermaier G (1997) Penguin diagrams, charmless B decays and the missing charm puzzle. Phys Rev D 56:7228–7239. https://doi.org/10.1103/PhysRevD.56.7228, arXiv:hep-ph/9706501

    Article  ADS  Google Scholar 

  37. Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236. https://doi.org/10.1016/S0550-3213(02)00262-6, arXiv:hep-ph/0203089

    Article  ADS  Google Scholar 

  38. Becirevic D (2001) Theoretical progress in describing the B meson lifetimes. PoS HEP 098. arXiv:hep-ph/0110124

  39. Fermilab Lattice, MILC collaboration, Bazavov A et al (2016) \(B^0_{(s)}\)-mixing matrix elements from lattice QCD for the standard model and beyond. Phys Rev D 93:113016. https://doi.org/10.1103/PhysRevD.93.113016, arXiv:1602.03560

  40. Blanke M, Buras AJ (2016) Universal unitarity triangle 2016 and the tension between \(\Delta M_{s,d}\) and \(\varepsilon _K\) in CMFV models. Eur Phys J C 76:197. https://doi.org/10.1140/epjc/s10052-016-4044-6, arXiv:1602.04020

  41. Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431. https://doi.org/10.1103/PhysRevD.54.4419,10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259

  42. CKMfitter collaboration, EPS-HEP 2015 results. http://ckmfitter.in2p3.fr/www/results/plots_eps15/num/ckmEval_results_eps15.html

  43. Aoki S et al (2014) Review of lattice results concerning low-energy particle physics. Eur Phys J C 74:2890. https://doi.org/10.1140/epjc/s10052-014-2890-7, arXiv:1310.8555

  44. Bobeth C, Haisch U, Lenz A, Pecjak B, Tetlalmatzi-Xolocotzi G (2014) On new physics in \(\Delta \Gamma _{d}\). JHEP 06:040. https://doi.org/10.1007/JHEP06(2014)040, arXiv:1404.2531

  45. Asatrian HM, Hovhannisyan A, Nierste U, Yeghiazaryan A (2017) Towards next-to-next-to-leading-log accuracy for the width difference in the \(B_s-\bar{B}_s\) system: fermionic contributions to order \((m_c/m_b)^0\) and \((m_c/m_b)^1\). JHEP 10:191. https://doi.org/10.1007/JHEP10(2017)191, arXiv:1709.02160

  46. HFLAV collaboration, Global fit for \(D^{0}-\bar{D}^{0}\) mixing, CHARM15. http://www.slac.stanford.edu/xorg/hflav/charm/CHARM15/results_mix_cpv.html

  47. Particle Data Group (PDG) collaboration. http://pdg.lbl.gov/

  48. Georgi H (1992) \(D-\bar{D}\) mixing in heavy quark effective field theory. Phys Lett B 297:353–357. https://doi.org/10.1016/0370-2693(92)91274-D, arXiv:hep-ph/9209291

    Article  ADS  Google Scholar 

  49. Ohl T, Ricciardi G, Simmons EH (1993) D-anti-D mixing in heavy quark effective field theory: the sequel. Nucl Phys B 403:605–632. https://doi.org/10.1016/0550-3213(93)90364-U, arXiv:hep-ph/9301212

    Article  ADS  Google Scholar 

  50. Falk AF, Grossman Y, Ligeti Z, Petrov AA (2002) SU(3) breaking and \(D^0-\bar{D}^0\) mixing. Phys Rev D 65:054034. https://doi.org/10.1103/PhysRevD.65.054034, arXiv:hep-ph/0110317

  51. Falk AF, Grossman Y, Ligeti Z, Nir Y, Petrov AA (2004) The \(D^0\) - \(\bar{D}^0\) mass difference from a dispersion relation. Phys Rev D 69:114021. https://doi.org/10.1103/PhysRevD.69.114021, arXiv:hep-ph/0402204

  52. Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with lepton-hadron symmetry. Phys Rev D 2:1285–1292. https://doi.org/10.1103/PhysRevD.2.1285

    Article  ADS  Google Scholar 

  53. Bobrowski M, Lenz A, Riedl J, Rohrwild J (2010) How large can the SM contribution to CP violation in \(D^0-\bar{D}^0\) mixing be? JHEP 03:009. https://doi.org/10.1007/JHEP03(2010)009, arXiv:1002.4794

  54. Lenz A, Rauh T (2013) D-meson lifetimes within the heavy quark expansion. Phys Rev D 88:034004. https://doi.org/10.1103/PhysRevD.88.034004, arXiv:1305.3588

  55. Bigi IIY, Uraltsev NG (2001) \(D^0\) - \(\bar{D}^0\) oscillations as a probe of quark hadron duality. Nucl Phys B 592:92–106. https://doi.org/10.1016/S0550-3213(00)00604-0, arXiv:hep-ph/0005089

    Article  ADS  Google Scholar 

  56. Bobrowski M, Lenz A, Rauh T (2012) Short distance \(D^0\) - \(\bar{D}^0\) mixing. In: Proceedings, 5th international workshop on charm physics (Charm 2012), Honolulu, Hawaii, USA, May 14–17, 2012. arXiv:1208.6438

  57. Golowich E, Pakvasa S, Petrov AA (2007) New physics contributions to the lifetime difference in \(D^0\)-\(\bar{D}^0\) mixing. Phys Rev Lett 98:181801. https://doi.org/10.1103/PhysRevLett.98.181801, arXiv:hep-ph/0610039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Kirk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirk, M.J. (2019). Quark-Hadron Duality. In: Charming New Physics in Beautiful Processes?. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19197-9_3

Download citation

Publish with us

Policies and ethics