Skip to main content

Theoretical Tools

  • Chapter
  • First Online:
Charming New Physics in Beautiful Processes?

Part of the book series: Springer Theses ((Springer Theses))

  • 294 Accesses

Abstract

In this chapter we explore some of the concepts, tools and methods which will be used in the rest of the thesis. The idea of effective field theories (EFTs) is one of the most powerful in physics, and we will explain them in Sect. 2.1, along with a specific example of an EFT in Sect. 2.3. Another omnipresent tool is the Heavy Quark Expansion, which we see in Sect. 2.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of the total lifetime and \(\Gamma _{12}\), you also find that an overall factor of \(\sqrt{1 - M_f^2/m_b^2}\), where \(M_f\) is the total mass of the final state quarks, appears in the calculations.

  2. 2.

    In the language of amplitudes, the optical theorem can be written in the form

    $$i \mathcal {M} (i \rightarrow f) + \left[ i \mathcal {M} (f \rightarrow i) \right] ^* = - (2\pi )^4 \sum _X \int _\text {p.s.} \left[ i \mathcal {M} (f \rightarrow X) \right] ^* i \mathcal {M} (i \rightarrow X) \,.$$
  3. 3.

    Note that the explicit \(\mu \) dependence in this result cancels with that of \(\alpha _s\) (from Eq. 2.4.8) to give a \(\mu \) independent result for \(C_1\) and \(C_2\), as expected since these are bare coefficients.

  4. 4.

    I.e. not at all.

  5. 5.

    Note that while this hierarchy is true for and mesons, they do not hold for mixing.

  6. 6.

    A full account of this calculation can be found in Chap. 1.2.1 of [29].

  7. 7.

    See for example [33] for a set of Feynman rules which make this sign clear.

  8. 8.

    For this reason, \(a_\text {sl}\) is often referred to as the flavour specific asymmetry, or \(a_\text {fs}\).

References

  1. Buchmuller W, Wyler D (1986) Effective lagrangian analysis of new interactions and flavor conservation. Nucl Phys B 268:621–653. https://doi.org/10.1016/0550-3213(86)90262-2

    Article  ADS  Google Scholar 

  2. Grzadkowski B, Iskrzynski M, Misiak M, Rosiek J (2010) Dimension-six terms in the standard model lagrangian. JHEP 10:085. https://doi.org/10.1007/JHEP10(2010)085, arXiv:1008.4884

  3. Khoze VA, Shifman MA (1983) HEAVY QUARKS. Sov Phys Usp 26:387. https://doi.org/10.1070/PU1983v026n05ABEH004398

    Article  ADS  Google Scholar 

  4. Shifman MA, Voloshin MB (1985) Preasymptotic effects in inclusive weak decays of charmed particles. Sov J Nucl Phys 41:120

    Google Scholar 

  5. Bigi IIY, Uraltsev NG (1992) Gluonic enhancements in non-spectator beauty decays: an Inclusive mirage though an exclusive possibility. Phys Lett B 280:271–280. https://doi.org/10.1016/0370-2693(92)90066-D

    Article  ADS  Google Scholar 

  6. Bigi IIY, Uraltsev NG, Vainshtein AI (1992) Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models. Phys Lett B 293:430–436. https://doi.org/10.1016/0370-2693(92)90908-M, https://doi.org/10.1016/0370-2693(92)91287-J, arXiv:hep-ph/9207214

  7. Blok B, Shifman MA (1993) The Rule of discarding 1/N(c) in inclusive weak decays. 1. Nucl Phys B399: 441–458. https://doi.org/10.1016/0550-3213(93)90504-I, arXiv:hep-ph/9207236

    Article  ADS  Google Scholar 

  8. Blok B, Shifman MA (1993) The Rule of discarding 1/N(c) in inclusive weak decays. 2. Nucl Phys B399:459–476.https://doi.org/10.1016/0550-3213(93)90505-J, arXiv:hep-ph/9209289

    Article  ADS  Google Scholar 

  9. Chay J, Georgi H, Grinstein B (1990) Lepton energy distributions in heavy meson decays from QCD. Phys Lett B 247:399–405. https://doi.org/10.1016/0370-2693(90)90916-T

    Article  ADS  Google Scholar 

  10. Luke ME (1990) Effects of subleading operators in the heavy quark effective theory. Phys Lett B 252:447–455. https://doi.org/10.1016/0370-2693(90)90568-Q

    Article  ADS  Google Scholar 

  11. Lenz A (2015) Lifetimes and heavy quark expansion. Int J Mod Phys A 30:1543005. https://doi.org/10.1142/S0217751X15430058, arXiv:1405.3601

    Article  ADS  Google Scholar 

  12. HFLAV collaboration, Amhis Y et al (2017) Averages of b-hadron, c-hadron, and \(\tau \)-lepton properties as of summer 2016. Eur Phys J C77:895, https://doi.org/10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233

  13. HFLAV collaboration. https://hflav.web.cern.ch

  14. HFLAV collaboration (2018) B lifetime and oscillation parameters, PDG. http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2018/

  15. Eichten E, Feinberg F (1981) Spin dependent forces in QCD. Phys Rev D 23:2724. https://doi.org/10.1103/PhysRevD.23.2724

    Article  ADS  Google Scholar 

  16. Caswell WE, Lepage GP (1986) Effective lagrangians for bound state problems in QED, QCD, and other field theories. Phys Lett 167B:437–442. https://doi.org/10.1016/0370-2693(86)91297-9

    Article  ADS  Google Scholar 

  17. Politzer HD, Wise MB (1988) Leading logarithms of heavy quark masses in processes with light and heavy quarks. Phys Lett B206:681–684, https://doi.org/10.1016/0370-2693(88)90718-6

    Article  ADS  Google Scholar 

  18. Politzer HD, Wise MB (1988) Effective field theory approach to processes involving both light and heavy fields. Phys Lett B 208:504–507. https://doi.org/10.1016/0370-2693(88)90656-9

    Article  ADS  Google Scholar 

  19. Eichten E, Hill BR (1990) An effective field theory for the calculation of matrix elements involving heavy quarks. Phys Lett B 234:511–516. https://doi.org/10.1016/0370-2693(90)92049-O

    Article  ADS  Google Scholar 

  20. Eichten E, Hill BR (1990) Static effective field theory: 1/m corrections. Phys Lett B 243:427–431. https://doi.org/10.1016/0370-2693(90)91408-4

    Article  ADS  Google Scholar 

  21. Grinstein B (1990) The static quark effective theory. Nucl Phys B 339:253–268. https://doi.org/10.1016/0550-3213(90)90349-I

    Article  ADS  MathSciNet  Google Scholar 

  22. Georgi H (1990) An effective field theory for heavy quarks at low-energies. Phys Lett B 240:447–450. https://doi.org/10.1016/0370-2693(90)91128-X

    Article  ADS  Google Scholar 

  23. Falk AF, Georgi H, Grinstein B, Wise MB (1990) Heavy meson form-factors from QCD. Nucl Phys B 343:1–13. https://doi.org/10.1016/0550-3213(90)90591-Z

    Article  ADS  Google Scholar 

  24. Falk AF, Grinstein B, Luke ME (1991) Leading mass corrections to the heavy quark effective theory. Nucl Phys B 357:185–207. https://doi.org/10.1016/0550-3213(91)90464-9

    Article  ADS  Google Scholar 

  25. Georgi H (1991) Heavy quark effective field theory. In: Theoretical advanced study institute in elementary particle physics (TASI 91): perspectives in the standard model boulder, Colorado, June 2–28, pp. 0589–630. http://www.people.fas.harvard.edu/~hgeorgi/tasi.pdf

  26. Neubert M (1994) Heavy quark symmetry. Phys Rept 245:259–396. https://doi.org/10.1016/0370-1573(94)90091-4, arXiv:hep-ph/9306320

    Article  ADS  Google Scholar 

  27. Buras AJ (1998) Weak Hamiltonian, CP violation and rare decays. In: Probing the standard model of particle interactions. Proceedings, summer School in theoretical physics, NATO advanced study Institute, 68th session, Les Houches, France, July 28–September 5, 1997. Pt. 1, 2, pp. 281–539, arXiv:hep-ph/9806471

  28. Nachtmann O (1990) Elementary particle physics: concepts and phenomena

    Book  Google Scholar 

  29. Bóna M (2001) Analysis of two-body charmless decays for branching ratio and CP-violating asymmetry measurements with the BaBar experiment, PhD thesis, Universita’ di Torino, 2001. http://inspirehep.net/record/923685/files/cer-002642923.pdf

  30. Gabbiani F, Gabrielli E, Masiero A, Silvestrini L (1996) A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nucl Phys B 477:321–352. https://doi.org/10.1016/0550-3213(96)00390-2, arXiv:hep-ph/9604387

    Article  ADS  Google Scholar 

  31. Aoki S et al (2017) Review of lattice results concerning low-energy particle physics. Eur Phys J C 77:112. https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299

  32. FLAG collaboration. http://flag.unibe.ch/MainPage

  33. Srednicki M (2004) Quantum field theory. Part 2. Spin one half, arXiv:hep-th/0409036

  34. Inami T, Lim CS (1981) Effects of superheavy quarks and leptons in low-energy weak processes \(K_L \rightarrow \mu \bar{\mu }\), \(K^+ \rightarrow \pi ^+ \nu \bar{\nu }\) and \(K^0 \longleftrightarrow \bar{K}^0\). Prog Theor Phys 65:297. https://doi.org/10.1143/PTP.65.297

    Article  ADS  Google Scholar 

  35. Artuso M, Borissov G, Lenz A (2016) CP violation in the \(B_s^0\) system. Rev Mod Phys 88:045002. https://doi.org/10.1103/RevModPhys.88.045002, arXiv:1511.09466

  36. Buras AJ, Jamin M, Weisz PH (1990) Leading and next-to-leading QCD corrections to \(\epsilon \) parameter and \(B^0 - \bar{B}^0\) mixing in the presence of a heavy top quark. Nucl Phys B 347:491–536. https://doi.org/10.1016/0550-3213(90)90373-L

    Article  ADS  Google Scholar 

  37. Ellis JR, Gaillard MK, Nanopoulos DV, Rudaz S (1977) The phenomenology of the next left-handed quarks. Nucl Phys B 131:285. https://doi.org/10.1016/0550-3213(77)90374-1

    Article  ADS  Google Scholar 

  38. Hagelin JS (1981) Mass mixing and CP violation in the \(B^0-\bar{B}^0\) system. Nucl Phys B 193:123–149. https://doi.org/10.1016/0550-3213(81)90521-6

    Article  ADS  Google Scholar 

  39. Franco E, Lusignoli M, Pugliese A (1982) Strong interaction corrections to CP violation in B0 anti-b0 mixing. Nucl Phys B 194:403. https://doi.org/10.1016/0550-3213(82)90018-9

    Article  ADS  Google Scholar 

  40. Chau L-L (1983) Quark mixing in weak interactions. Phys Rept 95:1–94. https://doi.org/10.1016/0370-1573(83)90043-1

    Article  ADS  Google Scholar 

  41. Buras AJ, Slominski W, Steger H (1984) \(B^0\)-\(\bar{B}^0\) mixing, C violation and the B-meson decay. Nucl Phys B 245:369–398. https://doi.org/10.1016/0550-3213(84)90437-1

    Article  ADS  Google Scholar 

  42. Khoze VA, Shifman MA, Uraltsev NG, Voloshin MB (1987) On inclusive hadronic widths of beautiful particles. Sov J Nucl Phys 46:112

    Google Scholar 

  43. Beneke M, Buchalla G, Greub C, Lenz A, Nierste U (1999) Next-to-leading order QCD corrections to the lifetime difference of \(B_s\) mesons. Phys Lett B 459:631–640. https://doi.org/10.1016/S0370-2693(99)00684-X, arXiv:hep-ph/9808385

    Article  ADS  Google Scholar 

  44. Ciuchini M, Franco E, Lubicz V, Mescia F, Tarantino C (2003) Lifetime differences and CP violation parameters of neutral B mesons at the next-to-leading order in QCD. JHEP 08:031. https://doi.org/10.1088/1126-6708/2003/08/031, arXiv:hep-ph/0308029

    Article  Google Scholar 

  45. Beneke M, Buchalla G, Lenz A, Nierste U (2003) CP asymmetry in flavor specific B decays beyond leading logarithms. Phys Lett B 576:173–183. https://doi.org/10.1016/j.physletb.2003.09.089, arXiv:hep-ph/0307344

    Article  ADS  Google Scholar 

  46. Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431. https://doi.org/10.1103/PhysRevD.54.4419, https://doi.org/10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259

  47. Dighe AS, Hurth T, Kim CS, Yoshikawa T (2002) Measurement of the lifetime difference of \(B_d\) mesons: possible and worthwhile? Nucl Phys B 624:377–404. https://doi.org/10.1016/S0550-3213(01)00655-1, arXiv:hep-ph/0109088

    Article  ADS  Google Scholar 

  48. Badin A, Gabbiani F, Petrov AA (2007) Lifetime difference in \(B_s\) mixing: Standard model and beyond. Phys Lett B 653:230–240. https://doi.org/10.1016/j.physletb.2007.07.049, arXiv:0707.0294

    Article  ADS  Google Scholar 

  49. Becirevic D, Gimenez V, Martinelli G, Papinutto M, Reyes J (2002) \(B\)-parameters of the complete set of matrix elements of \(\Delta B = 2\) operators from the lattice. JHEP 04:025. https://doi.org/10.1088/1126-6708/2002/04/025, arXiv:hep-lat/0110091

    Article  Google Scholar 

  50. Bouchard CM, Freeland ED, Bernard C, El-Khadra AX, Gamiz E, Kronfeld AS et al (2011) Neutral B mixing from 2+1 flavor lattice-QCD: the standard model and beyond, PoS LATTICE2011 274, https://doi.org/10.22323/1.139.0274, arXiv:1112.5642

  51. ETM collaboration, Carrasco N et al (2014) B-physics from \(N_f\) = 2 tmQCD: the standard model and beyond. JHEP 03:016. https://doi.org/10.1007/JHEP03(2014)016, arXiv:1308.1851

  52. Dowdall RJ, Davies CTH, Horgan RR, Lepage GP, Monahan CJ, Shigemitsu J (2014) B-meson mixing from full lattice QCD with physical u, d, s and c quarks, arXiv:1411.6989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew John Kirk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirk, M.J. (2019). Theoretical Tools. In: Charming New Physics in Beautiful Processes?. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19197-9_2

Download citation

Publish with us

Policies and ethics