Skip to main content

Effect of Wall Material on Vibration Modes of Wind Instruments

  • Chapter
  • First Online:

Abstract

The effect of material on the tone quality of wind instruments is a very controversial subject. At first glance it is evident, for example, that a flute made of wood has a different sound to a flute made of metal alloy. At closer observation, the influence of materials can raise multiple questions. The physics of wind musical instruments teaches us that the origin of sound production is by the open end of the waveguide. The contribution of wall vibration to sound production and to radiation of a pipe of circular section is not enough to radiate audible sound into the room. For a better understanding of the interaction between the wall vibration and the properties of materials it is necessary to describe the characteristics of wind musical instruments with impedance curves. A specific device—BIAS—was developed by the Wiener Klangstill Institute for the measurements of the impedance curve versus frequency. In this chapter the effects of wall thickness, the geometry of a tube and of wind instruments, the nature of materials, the wall surface quality and thermal losses were discussed. It is worth mentioning that the methodology developed by Tronchin and co-workers (Cocchi and Tronchin in Proc Acoust Soc Am 103:763–764, 1998; Tronchin in Non-linear convolution applied to acoustic signals, 2012; Tronchin in The emulation of non-linearity of musical instruments by means of Volterra series, 2016; Tronchin and Amendola in On the effect of material in the acoustics of flutes, 2016) allowed to notice the differences in timbre among the flutes made of copper alloy, silver and gold. This very complex methodology is based on sound vibrational behaviour of the flute and is expressed as frequency response function and intensity of acoustic radiation. Having in mind theoretical considerations and numerous experimental approaches described in this chapter, we can mention that materials have a limited effect, if any, on the sound of acoustic specimens or experimental musical instruments. On the other hand, the vibration of a wind instrument wall can influence the feeling of a player for various reasons. It is evident that different materials provide very different amounts of damping, and therefore it is also evident that this phenomenon should be taken into consideration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angster J, Paal G, Garen W, Miklos A (1998) The effect of wall vibrations on the timbre of organ pipes. In: Proceedings of 16th International Congress on Acoustics and 135th JASA Meeting, Seattle, vol 3, pp 753–754

    Google Scholar 

  • Angster J, Dubovski Z, Miklos A (2011) Zinc for organ pipe building. J Acoust Soc Am 129:2519

    Article  ADS  Google Scholar 

  • Backus J (1964) Effect of wall material on the steady-state tone quality of woodwind instruments. J Acoust Soc Am 36(10):1881–1887

    Article  ADS  Google Scholar 

  • Barnes (1993) Brass instruments: their history and development. Dover Publications

    Google Scholar 

  • Benade AH (1959) On woodwind instrument bores. J Acoust Soc Am 31(2):137–146

    Article  ADS  Google Scholar 

  • Benade AH (1967) Absorption cross section of a pipe organ due to resonant vibration of the pipe walls. J Acoust Soc Am 42(1):210–223

    Article  ADS  Google Scholar 

  • Benade AH (1976) Fundamental of musical acoustics, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Benade AH, French JW (1965) Analysis of the flute head joint. J Acoust Soc Am 37:679–691

    Article  ADS  Google Scholar 

  • Benade AH, Jansson EV (1974) On Plane and Spherical Waves in Horns with Non uniform Flare: Part I. Theory of radiation, resonance frequencies, and mode conversion. Acta Acustica united with Acustica 31(2):79–98. Part ii. prediction and measurements of resonance frequencies and radiation losses. Acta Acustica united with Acustica 31(4):185–202

    Google Scholar 

  • Bertsch M (2003) Bridging instrument control aspects of brass instruments with physics-based parameters. In: Proceedings of SMAC 03, Stockholm, pp 193–196

    Google Scholar 

  • Boner CP, Newman RB (1940) The effect of wall materials on the steady-state acoustic spectrum of flue pipe. J Acoust Soc Am 12:83–89

    Article  ADS  Google Scholar 

  • Bowsher JM, Walkinson PS (1982) Manufactureres’ opinion about brass instruments. Brass Bull 38(2):25–30

    Google Scholar 

  • Brackett DJ (2011) The optimisation of brass instruments to include wall vibration effects. Doctoral dissertation, © David J Brackett (dspace.lboro.ac.uk)

    Google Scholar 

  • Campbell M (2004) Brass instruments as we know them today. Acustica United Acustica 90:600–610

    Google Scholar 

  • Campbell M (2013) Objective evaluation of musical instrument quality: A grand challenge in musical acoustics. ICA 2013 Montreal. In: Proceedings of meetings on acoustics, vol 19, 15p

    Google Scholar 

  • Caussé R, Evno P, Gilbert JA (2013) What can we deduce from measured resonance frequencies of trumpet concerning playing frequencies. Proceedings ICA 2014, vol 19, No 1, p 035066

    Google Scholar 

  • Chaigne A, Kergomard J (2013) Acoustique des instruments de musique (2e édition), Paris, Edition Belin

    Google Scholar 

  • Chatziioannou V, Kausel W, Moore T (2012) The effect of wall vibrations on the air column inside trumpet bells. In: Proceedings of Acoustics 2012 conference, Nantes, France

    Google Scholar 

  • Cocchi A, Tronchin L (1998) Material and obsolescence on flute quality. Proc Acoust Soc Am 103:763–764

    Google Scholar 

  • Coltman JW (1971) Effect of material on flute tone quality. J Acoust Soc Am 49(2):520–523

    Article  ADS  Google Scholar 

  • Coltman JW (1985) The role of the head-joint in flute intonation. Flute Notes, London, pp 5–7

    Google Scholar 

  • Corwin LA (2007) Why does the pitch of a brass wind instrument increases when temperature increases

    Google Scholar 

  • Dickens P A (2007) Flute acoustics: measurements, modelling and design. Doctoral dissertation, Ph.D. thesis, University of New South Wales

    Google Scholar 

  • Dorn S, Whitehouse J, Sharp D (2006) The effect of wall material on the structural vibrations excited when lip-reed instruments are blown. In: Proceedings of Institute of Acoustics, Southampton, UK, vol 28, part 1, 10p, 3–4 April 2006

    Google Scholar 

  • Evno P (2012) The input impedance for the support of the musical instruments making: measurements, models and link with the playing frequencies. Ph.D. University Pierre et Marie Curie, Paris, France

    Google Scholar 

  • Evno P, Petiot JF, Gilbert J, Kieffer B, Caussé R (2014) The relationship between bore resonance frequencies and playing frequencies in trumpets. Acta Acustica United Acustica 100:362–374

    Article  Google Scholar 

  • Faber B, Hirschberg A (2000) Physical modelling of flue instruments: a review of lumped models. Acustica United Acta Acustica 86:599–610

    Google Scholar 

  • Farina A, Righini F (1997) Software implementation of an MLS analyzer, with tools for convolution, auralization and inverse filtering. Pre-prits of the 103rd AES C onvention, New York, 26–29 Sept 1997

    Google Scholar 

  • Fletcher NH (1976) Sound production by organ flue pipe. J Acoust Soc Am 60(4):926–936

    Article  ADS  Google Scholar 

  • Fletcher (1979a) Air flow sound generation in musical wind instruments. Ann Rev Fluid Mech 11:123–146

    Google Scholar 

  • Fletcher NH (1979b) Excitation mechanisms in woodwind and brass instruments. Acta Acustica United Acustica 43(1):63–72

    MathSciNet  Google Scholar 

  • Fletcher NH (1994) Acoustic and aerodynamic determinants of the sound quality of flutes. Paper at the Meeting of the Acoustical Society of America, Cambridge, MA, 6–10 June 1994

    Article  Google Scholar 

  • Fletcher NH, Douglas LM (1980) Harmonic generation in organ pipes, recorders, and flutes. J Acoust Soc Am 68(3):767–771

    Article  ADS  Google Scholar 

  • Fletcher NH, Rossing TD (2010) The physics of musical instruments. Springer, New York

    MATH  Google Scholar 

  • Fletcher NH, Strong WJ, Silk RK (1982) Acoustical characterisation of flute head joints. J Acoust Soc Am 71:1255–1260

    Article  ADS  Google Scholar 

  • Gautier F (1997) Contribution a l’étude du comportement vibroacoustique des instruments a vent. PhD Universite de Maine, Le Mans, France

    Google Scholar 

  • Gautier F (2010) Vibroacoustique des instruments a vent: mythes et sons pathologiques Musique et Technique 5:26–41

    Google Scholar 

  • Gautier F, Tahani N (1998a) Vibroacoustic behaviour of a simplified musical wind instrument. J Sound Vibr 213(1):107–125

    Article  ADS  Google Scholar 

  • Gautier F, Tahani N (1998b) Vibroacoustics of cylindrical pipes: internal radiation modal coupling. J Sound Vibr 215(5):1165–1179

    Article  ADS  Google Scholar 

  • Gazengel B, Gilbert J, Amir N (1995) Time domain simulation of single reed wind instrument. From the measured input impedance to the synthesis signal: where are the traps? Acta Acustica United Acustica 3:445–472

    Google Scholar 

  • Gibiat V, Bouche-Pillon M, Perrot S, Vandenbogaerde T, Roumaire J (1997) Influence des résonances mécaniques sur l’émission acoustique d’un instrument à vent simplifié. In: Proceedings of the Fourth Congress on Acoustics of SFA, Marseille, France, pp 585–588

    Google Scholar 

  • Gilbert J, Campbell DM, Myers A, Pyle RW (2007) Differences between brass instruments arising from variations in brassiness due to non linear propagation. In: Proceedings of ISMA international symposium on musical acoustics, Barcelona. https://hal.archives-ouvertes.fr/hal-00475561/documen

  • Hockje P (2003) SEA applications to wind instruments. J Acoust Soc Am 113:2315

    Article  ADS  Google Scholar 

  • Hockje P, Morrison A (1999) Finite‐element analysis of vibrating trombone bell. J Acoust Soc Am 105(2):1126–1126

    Google Scholar 

  • Hurtgen CM (1999) Body vibrational spectra of metal flute models. J Undergraduate Res Phys 18(1):24

    Google Scholar 

  • Jansson EV, Benade AH (1974) On plane and spherical waves in horns with non-uniform flare. Part ii. prediction and measurements of resonance frequencies and radiation losses. Acta Acustica united with Acustica 31(4):185–202

    Google Scholar 

  • Jeans AJ (1953) Science and music. Cambridge University Press, London

    Google Scholar 

  • Jones AT (1939) Recent investigation in organ pipes. J Acoust Soc Am 11:122–128

    Article  ADS  Google Scholar 

  • Jones J IV, Rogers C (2003) The acoustic effect of cryogenically treated trumpet. J Acoust Soc. Am 114(4): 2349–2359

    Google Scholar 

  • Kausel W, Chatziioannou V (2011) More on the structural mechanics of brass wind instrument bells. Proceedings of Forum Acusticum Aalborg 2011, 527–532

    Google Scholar 

  • Kausel W, Mayer A, Nachtmann G (2007) Experimental demonstration of the effect of wall vibrations on the radiated sound of the horn and a search for possible explanations. In: Proceedings of international symposium on musical acoustics (ISMA ’07), Barcellona, vol 1, 2YS

    Google Scholar 

  • Kausel W, Zietlow DW, Moore TR (2010) Influence of wall vibrations on the sound of brass wind instruments. J Acoust Soc Am 128(5):3161–3174

    Article  ADS  Google Scholar 

  • Kob M (2000) Influence of wall vibrations on the transient sound of a flue organ pipe. Acta Acustica United Acustica 86(4):642–648

    Google Scholar 

  • Kob M (2001) Can wall vibrations alter the sound of a flue organ pipe. In: Proceedings of ICA 2001, pp 12–13

    Google Scholar 

  • Lawson B, Laewson W (1985) Acoustical characteristics of annealed French horn bell flares. J Acoust Soc Am 77(5):1913–1916

    Article  ADS  Google Scholar 

  • Lottermoser W (1937) Der Einfluß des Materials von OrgelMetallpfeifen auf ihre Tongebung. Akustische Zeitschrift 2:129–134

    Google Scholar 

  • Lottermoser W (1938) Die Einfluss des Materials von Orgel-Metallpfeifen aufihre Tonebung. Akustische Zeitschrift 3:63–64

    Google Scholar 

  • Lottermoser W, Meyer J (1962) About the influence of the material on timbre properties of organ pipes. Metall 16:108–111

    Google Scholar 

  • Lottermoser W, Meyer J (1964) Die Verwendung von Kunststoffen bei Orgelpfeifen. Instr Z 18:195–198

    Google Scholar 

  • Mahler I, Eltaib MEH, Sarhan AAD (2014) Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC—computer numerical control—and milling—ANFIS—adaptive neuro-fuzzy inference system—modelling. Int J Manuf Technol 74:531–537

    Article  Google Scholar 

  • Miklos A, Angster J (1999) Sound production of flue organ pipes. J Acoust Soc Am 105(2):938–939

    Article  ADS  Google Scholar 

  • Miller DC (1909) The influence of the material of wind instruments on the tone quality. Science 735:161–171

    Article  ADS  Google Scholar 

  • Moore TR, Shirley E, Daniels A (2003) Trumpet bell vibrations and their effect on the sound of the instrument, In: Proceedings of Stockholm musical acoustics conference (SMAC 03), pp 213–215

    Google Scholar 

  • Moore TR, Shirley ET, Codrey IE, Daniels AE (2005) The effects of bell vibrations on the sound of the modern trumpet. Acta Acustica United Acustica 91(3):578–589

    Google Scholar 

  • Moore T, Kausel W, Chatziioannou V, Etchenique N, Gorman B (2013) Axial vibrations of brass wind instruments. In: Proceedings of meetings on acoustics ICA montreal 2013, vol 19(1), p 035073

    Google Scholar 

  • Morral FR (1986) Metals and alloys in musical-instruments. CIM Bull 79(889):86–88

    Google Scholar 

  • Myers A (2010) Research on historical musical instruments. I. Congres Internat. Investigacio Musica, Valencia, Spain, Libro de Actas, pp 72–77

    Google Scholar 

  • Myers A, Gilbert J, Pyle RW, Campbell DM (2007) Non-linear propagation characteristics in the evolution of brass musical instrument design. Proc. 19th ICA 2007 Madrid

    Google Scholar 

  • Myers A, Gilbert J, Pyle B, Campbell M (2010) Non-linear propagation characteristics in the evolution of brass musical instruments design. In: Proceedings of 19th ICA, Madrid, Spain, 6p. https://hal.archives-ouvertes.fr/hal-00475592

  • Nachtmann G, Kausel W, Mayer A (2007) Bell vibrations and radiated sound of brass wind instruments—is there an audible correlation? In: Proceedings of 3rd Congress of the AAAA (Alps Adria Acoustics Association). https://iwk.mdw.ac.at

  • Nederveen CJ, Dalmont JP (1999) Experimental investigation of wall influences on woodwind instrument sound. Acta Acustica United Acustica 85(Suppl 1):S76

    Google Scholar 

  • Nederveen CJ, Dalmont JP (2004) Pitch and level changes in organ pipes due to wall resonances. J Sound Vibr 271(1):227–239

    Article  ADS  Google Scholar 

  • Nief G, Gautier F, Dalmont JP, Gilbert J (2008a) Influence of wall vibrations on the behavior of a simplified wind instrument. J Acoust Soc Am 124(2):1320–1331

    Article  ADS  Google Scholar 

  • Nief G, Gautier F, Dalmont JP, Gilbert J (2008b) External sound radiation of vibrating trombone bells. J Acoust Soc Am 123(5):3237 (Proceedings of Acoustics ’08, Paris, pp 3231–3235)

    Google Scholar 

  • Pico-Vila R (2004) Vibroacoustique des conduits cylindriques faiblement distordus: étude de l’influence des vibrations de paroi sur les oscillations des instruments de musique à vent. Doctoral dissertation, Université du Maine, Le Mans, France

    Google Scholar 

  • Pico-Vila R, Gautier F (2007) The vibroacoustics of slightly distorted cylindrical shells. A model of the acoustic input impedance. J Sound Vibr 302:18–38

    Article  ADS  Google Scholar 

  • Pico-Vila R, Gautier F, Redondo J (2007) Acoustic input impedance of a vibrating cylindrical tube. J Sound Vibr 301(3):649–664

    Article  ADS  Google Scholar 

  • Pratt RL, Bowsher JM (1978) The subjective assessment of trombone quality. J Sound Vibr 57(3):425–435

    Article  ADS  Google Scholar 

  • Pratt RL, Bowsher JM (1979) The objective assessment of trombone quality. J Sound Vibr 65(4):521–547

    Article  ADS  Google Scholar 

  • Pyle RW Jr (1981) The effect of lacquer and silver plating on horn tone. Horn Call 11:26–29

    Google Scholar 

  • Pyle RW Jr (1997) How brass instruments are built: art, craft, perhaps even science. J Acoust Soc Am 101:3056

    ADS  Google Scholar 

  • Pyle RW Jr (2009) Does a brass-instrument’s timbre depend on the alloy from which is made? J Acoust Soc Am 125:2597

    Article  ADS  Google Scholar 

  • Rendall FG, Bate P (1971) The clarinet: some notes upon its history and construction. E. Benn, London

    Google Scholar 

  • Richardson EG (1929) Cantor lectures on wind instruments from musical and scientific aspects. Royal Society of Arts, London

    Google Scholar 

  • Rockstro RS (1890) A treatise on the flute. Musica Rara, London, p 1967

    Google Scholar 

  • Rucz P (2009) Determination of organ pipes’ acoustic parameters by means of numerical techniques. Akusztikai Szemle IX(5):1–9. http://www.hit.bme.hu/~rucz/pub/Rucz_-_2010_AcRev.pdf

  • Rucz P (2018) Acoustical evaluation of a novel flute head construction. In: Proceedings of DAGA München, pp 1679–1682

    Google Scholar 

  • Sanborn C (1997) Confessions of a brass repair man: an interview with Ron Partch. Int Trumpet Guild J

    Google Scholar 

  • Smervik T (2009) The impedance of brass instruments, with special attention to numerical simulation analysing the possible influence of wall vibrations. Doctoral thesis, Norwegian University of Science and Technology (NTNU)

    Google Scholar 

  • Smith RA (1986) The effect of material in brass instruments. Proc Inst Acoustics 8:91–96

    Google Scholar 

  • Smith J, Wolfe J, Green M (2003) Head joint, embouchure hole and filtering effects on the input impedance of flutes. In: Proceedings of Stockholm music acoustics conference (SMAC ’03), pp 295–298

    Google Scholar 

  • Stanzial D (2005) On the intensimetric analysis and monitoring of flue organ pipe. Forum Acusticum 2005:641–646

    Google Scholar 

  • Stanzial D, Bonsi D, Schiffrer G (2003) Four dimensional treatment of linear acoustic fields and radiation pressure. Acta Acustica United Acustica 89(2):213–224

    Google Scholar 

  • Tronchin L (2012) Non-linear convolution applied to acoustic signals. In: Proceedings of 16th WEEAS International Conference on Circuits and Systems, pp 485–490

    Google Scholar 

  • Tronchin L (2016) The emulation of non-linearity of musical instruments by means of Volterra series. In: Diagnostic and imaging on musical instruments, Ed. Emanuele Marconi, Firenze, pp 213–225

    Google Scholar 

  • Tronchin A, Amendola A (2016) On the effect of material in the acoustics of flutes. In: Making wooden musical instruments—an integration of different forms of knowledge. Cost Action FP 1302. Museu de la Musica de Barcelona, pp 43–46

    Google Scholar 

  • Tronchin L, Coli VL (2015) Further investigations in the emulation of nonlinear systems with Volterra series. J Audio Eng. Soc. 63(9):671–683

    Article  Google Scholar 

  • Whitehouse J (2003) A study of the wall vibrations excited during the playing of lip-reed instruments. Doctoral dissertation, The Open University

    Google Scholar 

  • Whitehouse J (2011) A study of the wall vibrations during the playing of lip-reed instruments. Proc Forum Acusticum Aalborg 2011: 527–532

    Google Scholar 

  • Whitehouse J, Sharp DB (2008) A psychoacoustical investigation into the effect of wall material on the sound produced by lip-reed instruments. In: Proceedings of Institute of Acoustics UK, 8p, 10–11 April 2008. http://www.proceddings.com/02753.html

  • Whitehouse J, Sharp DB, Harrop ND (2002) An investigation into wall vibrations induced in wind instruments constructed from different metals. In: Proceedings of ISMA, Mexico City

    Google Scholar 

  • Widholm G, Linortner R, Klausel W, Bertsch M (2001) Silver, gold, platinum—and the sound of flute. Proc ISMA 2001:277–280

    Google Scholar 

  • Williams CFA (1903) The story of the organ. Walter Scott Publishing Company Limited, Newcastle

    Google Scholar 

  • Wogram K (1972) A contribution to the measurement of the intonation of brass instruments. Ph D thesis Technical University Braunschweig

    Google Scholar 

  • Wogram K (1976a) Influence of material and surface properties on the sound of brass wind instruments. Das Musikinstrument 5:414–418

    Google Scholar 

  • Wogram K (1976b) Effect of material on sound of brass instruments. Instrumentenbau Z. 5:414–418

    Google Scholar 

  • Wogram K (1979) Paper at the Internat. Horn Workshop Los Angeles University of Southern California

    Google Scholar 

  • Wogram K (2004) Basic requirements for realistic and unprejudiced evaluation of musical instruments. J Acoust Soc Am 114:2409–2410

    Article  ADS  Google Scholar 

  • Wolfe J, Smith J (2003) Cut-off frequencies and cross fingerings in baroque, classical and modern flutes. J Acoust Soc Am 114(4):2263–2272

    Article  ADS  Google Scholar 

  • Wolfe J, Smith J, Tann J, Fletcher NH (2001) Acoustic impedance spectra of classical and modern flutes. J Sound Vibr 243(1):127–144

    Article  ADS  Google Scholar 

  • Wood A (1944) Physics of Music. Dover Publications, Inc., New York

    Google Scholar 

  • Yamauchi K, Kai Y, Iwamiya S (2001a) The effect of materials of a flute’s crown and a cello’s endspin on the timbre of musical instruments. Acoust Sci Technol 22(1):47–48

    Article  Google Scholar 

  • Yamauchi K, Kai Y, Iwamiya S (2001b) The effects of materials of a flute crown and a cello endpin on the timbre of musical instruments. Acoust Sci Technol 22(1):47–48

    Article  Google Scholar 

  • Yoshikawa S (1985) Energy dissipations in underwater and aerial organ pipes. J Acoust Soc Japan (E) 6(3):181–192

    Article  MathSciNet  Google Scholar 

  • Young RW (1946) Dependence of tuning of wind instruments on temperature. J Acoust Soc Am 17(3):187–191

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bucur, V. (2019). Effect of Wall Material on Vibration Modes of Wind Instruments. In: Handbook of Materials for Wind Musical Instruments . Springer, Cham. https://doi.org/10.1007/978-3-030-19175-7_9

Download citation

Publish with us

Policies and ethics