Cardiovascular Hemodynamics pp 117-133 | Cite as
Mechanical Circulatory Support
- 872 Downloads
Abstract
In other chapters, there are detailed discussions of acute decompensated heart failure (Chap. 19) and shock (Chap. 21). Cardiogenic shock (CS) represents a state in which cardiac dysfunction is either wholly or partially responsible for an inadequate level of cardiac output to support end-organ function. CS is an especially dangerous state, with in-hospital mortality as high as 27–51% (van Diepen et al., Circulation. 136:e232–68, 2017). Therefore, interventions that promptly reverse the pathophysiologic process are critical. While CS can result from a variety of etiologies – acute myocardial infarction (AMI), acute valvular regurgitation, decompensated heart failure, ventricular tachycardic storm, or myocarditis, to name just a few – once the insult triggers primary dysfunction, the nature of CS is a downward spiral of consequences ultimately resulting in multi-organ failure and death. Even if myocardial ischemia is not the primary cause of cardiac dysfunction, a drop in cardiac output and coronary perfusion pressure during CS nonetheless leads to ischemia and further systolic and diastolic dysfunction, both of which precipitate a feedback loop of progressive dysfunction. This chapter focuses on the use of mechanical circulatory support (MCS) to intervene in the early stages of this cycle.
References
- 1.van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136(16):e232–68. https://doi.org/10.1161/CIR.0000000000000525.CrossRefPubMedGoogle Scholar
- 2.Uriel N, Sayer G, Annamalai S, Kapur NK, Burkhoff D. Mechanical unloading in heart failure. J Am Coll Cardiol. 2018;72(5):569–80. https://doi.org/10.1016/j.jacc.2018.05.038.CrossRefPubMedGoogle Scholar
- 3.Thiele H, Ohman EM, Desch S, Eitel I, de Waha S. Management of cardiogenic shock. Eur Heart J. 2015;36(20):1223–30. https://doi.org/10.1093/eurheartj/ehv051.CrossRefPubMedGoogle Scholar
- 4.Stretch R, Sauer CM, Yuh DD, Bonde P. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64(14):1407–15. https://doi.org/10.1016/j.jacc.2014.07.958.CrossRefPubMedGoogle Scholar
- 5.Parissis H, Graham V, Lampridis S, Lau M, Hooks G, Mhandu PC. IABP: history-evolution-pathophysiology-indications: what we need to know. J Cardiothorac Surg. 2016;11. https://doi.org/10.1186/s13019-016-0513-0.
- 6.Naqvi SY, Salama IG, Yoruk A, Chen L. Ambulatory intra aortic balloon pump in advanced heart failure. Card Fail Rev. 2018;4(1):43–5. https://doi.org/10.15420/cfr.2018:22:1.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Kern MJ, Aguirre FV, Tatineni S, et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J Am Coll Cardiol. 1993;21(2):359–68.CrossRefGoogle Scholar
- 8.Briceno N, Kapur NK, Perera D. Percutaneous mechanical circulatory support: current concepts and future directions. Heart. 2016;102(18):1494–507. https://doi.org/10.1136/heartjnl-2015-308562.CrossRefPubMedGoogle Scholar
- 9.Thiele H, Zeymer U, Neumann F-J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96. https://doi.org/10.1056/NEJMoa1208410.CrossRefPubMedGoogle Scholar
- 10.Badiye AP, Hernandez GA, Novoa I, Chaparro SV. Incidence of hemolysis in patients with cardiogenic shock treated with Impella percutaneous left ventricular assist device. ASAIO J. 2016;62(1):11–4. https://doi.org/10.1097/MAT.0000000000000290.CrossRefPubMedGoogle Scholar
- 11.Flierl U, Tongers J, Berliner D, et al. Acquired von Willebrand syndrome in cardiogenic shock patients on mechanical circulatory microaxial pump support. PLoS One. 2017;12(8):e0183193. https://doi.org/10.1371/journal.pone.0183193.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Castillo-Sang MA, Prasad SM, Singh J, Ewald GA, Silvestry SC. Thirty-five day Impella 5.0 support via right axillary side graft cannulation for acute cardiogenic shock. Innovations (Phila). 2013;8(4):307–9. https://doi.org/10.1097/IMI.0000000000000009.CrossRefGoogle Scholar
- 13.Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8. https://doi.org/10.1016/j.jacc.2008.05.065.CrossRefPubMedGoogle Scholar
- 14.Engström AE, Cocchieri R, Driessen AH, et al. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: the Academic Medical Center intensive care unit experience. Crit Care Med. 2011;39(9):2072–9. https://doi.org/10.1097/CCM.0b013e31821e89b5.CrossRefPubMedGoogle Scholar
- 15.Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69(3):278–87. https://doi.org/10.1016/j.jacc.2016.10.022.CrossRefPubMedGoogle Scholar
- 16.O’Neill WW, Schreiber T, Wohns DHW, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella registry. J Interv Cardiol. 2014;27(1):1–11. https://doi.org/10.1111/joic.12080.CrossRefPubMedGoogle Scholar
- 17.Hall SA, Uriel N, Carey SA, et al. Use of a percutaneous temporary circulatory support device as a bridge to decision during acute decompensation of advanced heart failure. J Heart Lung Transplant. 2018;37(1):100–6. https://doi.org/10.1016/j.healun.2017.09.020.CrossRefPubMedGoogle Scholar
- 18.Lima B, Kale P, Gonzalez-Stawinski GV, Kuiper JJ, Carey S, Hall SA. Effectiveness and safety of the Impella 5.0 as a bridge to cardiac transplantation or durable left ventricular assist device. Am J Cardiol. 2016;117(10):1622–8. https://doi.org/10.1016/j.amjcard.2016.02.038.CrossRefPubMedGoogle Scholar
- 19.Gilotra NA, Stevens GR. Temporary mechanical circulatory support: a review of the options, indications, and outcomes. Clin Med Insights Cardiol. 2015;8(Suppl 1):75–85. https://doi.org/10.4137/CMC.S15718.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469.e1–8. https://doi.org/10.1016/j.ahj.2006.05.031.CrossRefGoogle Scholar
- 21.Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26(13):1276–83. https://doi.org/10.1093/eurheartj/ehi161.CrossRefPubMedGoogle Scholar
- 22.Gregoric ID, Cohn WE, Akay MH, La Francesca S, Myers T, Frazier OH. CentriMag left ventricular assist system. Tex Heart Inst J. 2008;35(2):184–5.PubMedPubMedCentralGoogle Scholar
- 23.Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11(9):e004905. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905.CrossRefPubMedGoogle Scholar
- 24.Patel S, Lipinski J, Al-Kindi S, et al. Simultaneous venoarterial extracorporeal membrane oxygenation and percutaneous left ventricular decompression therapy with Impella is associated with improved outcomes in refractory cardiogenic shock. ASAIO J. 2019;65(1):21–8. https://doi.org/10.1097/MAT.0000000000000767.CrossRefPubMedGoogle Scholar
- 25.Kapur NK, Esposito M. Hemodynamic support with percutaneous devices in patients with heart failure. Heart Fail Clin. 2015;11(2):215–30. https://doi.org/10.1016/j.hfc.2014.12.012.CrossRefPubMedGoogle Scholar
- 26.Hoeper MM, Tudorache I, Kühn C, et al. Extracorporeal membrane oxygenation watershed. Circulation. 2014;130(10):864–5. https://doi.org/10.1161/CIRCULATIONAHA.114.011677.CrossRefPubMedGoogle Scholar
- 27.Cakici M, Gumus F, Ozcinar E, et al. Controlled flow diversion in hybrid venoarterial-venous extracorporeal membrane oxygenation. Interact Cardiovasc Thorac Surg. 2018;26(1):112–8. https://doi.org/10.1093/icvts/ivx259.CrossRefPubMedGoogle Scholar
- 28.Madershahian N, Nagib R, Wippermann J, Strauch J, Wahlers T. A simple technique of distal limb perfusion during prolonged femoro-femoral cannulation. J Card Surg. 2006;21(2):168–9. https://doi.org/10.1111/j.1540-8191.2006.00201.x.CrossRefPubMedGoogle Scholar
- 29.Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20(1):387. https://doi.org/10.1186/s13054-016-1570-4.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Lim HS, Howell N, Ranasinghe A. The physiology of continuous-flow left ventricular assist devices. J Card Fail. 2017;23(2):169–80. https://doi.org/10.1016/j.cardfail.2016.10.015.CrossRefPubMedGoogle Scholar
- 31.Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. https://doi.org/10.1016/j.healun.2012.09.013.CrossRefPubMedGoogle Scholar
- 32.Kapur Navin K, Esposito Michele L, Yousef B, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136(3):314–26. https://doi.org/10.1161/CIRCULATIONAHA.116.025290.CrossRefPubMedGoogle Scholar
- 33.Kuchibhotla S, Esposito ML, Breton C, et al. Acute biventricular mechanical circulatory support for cardiogenic shock. J Am Heart Assoc. 2017;6(10). https://doi.org/10.1161/JAHA.117.006670.