• Amanda R. VestEmail author
Part of the Contemporary Cardiology book series (CONCARD)


The four major determinants of cardiac output are cardiac preload, myocardial contractility, heart rate, and afterload. Of these four elements, preload is the primary determinant. Cardiac preload is a semiquantitative composite assessment that encompasses all of the factors that contribute to passive ventricular wall stress at the end of diastole. Accurate measurement of intracardiac pressure waveforms derived from the pulmonary artery catheter is a key component of clinical hemodynamic management of patients with cardiovascular diseases. Noninvasive preload assessment techniques have practical limitations but are an area of active clinical development and could represent an important advance in heart failure care.


Preload Pressure Volume Waveforms Venous Catheter 


  1. 1.
    Norton JM. Towards consistent definitions for preload and afterload. Adv Physiol Educ. 2001;25:53–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Mohrman DE, Lois JH. Cardiovascular physiology, Lange physiology series. 5th ed. London: McGraw Hill; 2003.Google Scholar
  3. 3.
    Schuster M, Nave H, Piepenbrock S, Pabst R, Panning B. The carina as a landmark in central venous catheter placement. Br J Anaesth. 2000;85:192–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Daily EK, Schoroeder JS. Techniques in bedside hemodynamic monitoring. 2nd ed. St. Louis: Mosby; 1994.Google Scholar
  5. 5.
    Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S55–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross J Jr, Braunwald E. Studies on Starling’s Law of the Heart: IX. The effect of impeding venous return on performance of the normal and failing human left ventricle. Circulation. 1964;30:719–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Rothe CF. Physiology of venous return. An unappreciated boost to the heart. Arch Intern Med. 1986;146(5):977–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Tyberg JV. Venous modulation of ventricular preload. Am Heart J. 1992;123(4. Pt 1):1098–104.PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson LR. Essential medical physiology. 3rd ed. San Diego: Academic; 2003.Google Scholar
  10. 10.
    Peters J, Fraser C, Stuart RS, Baumgartner W, Robotham JL. Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Phys. 1989;257(1 Pt 2):H120–31.Google Scholar
  11. 11.
    Forrester JS, Diamond G, McHugh TJ, Swan HJ. Filling pressures in the right and left sides of the heart in acute myocardial infarction. A reappraisal of central-venous-pressure monitoring. N Engl J Med. 1971;285(4):190–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Ahrens TS, Taylor LA. Hemodynamic waveform analysis. Philadelphia: WB Saunders; 1992.Google Scholar
  13. 13.
    Warren SE, Dennish G. Vasodilator treatment for acute and chronic heart failure. Br Heart J. 1978;40:1059–60.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yamamuro A, Yoshida K, Hozumi T, Akasaka T, Takagi T, Kaji S, Kawamoto T, Yoshikawa J. Noninvasive evaluation of pulmonary capillary wedge pressure in patients with acute myocardial infarction by deceleration time of pulmonary venous flow velocity in diastole. J Am Coll Cardiol. 1999;34:90–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Rahimtoola SH, Loeb HS, Ehsani A, Sinno MZ, Chuquimia R, Lal R, Rosen KM, Gunnar RM. Relationship of pulmonary artery to left ventricular diastolic pressures in acute myocardial infarction. Circulation. 1972;46:283–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Flores ED, Lange RA, Hills LD. Relation of mean pulmonary arterial wedge pressure and left ventricular end-diastolic pressure. Am J Cardiol. 1990;66:1532–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav JS, CHAMPION Trial Study Group. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Zile MR, Gaasch WH, Carroll JD, Feldman MD, Aurigemma GP, Schaer GL, Ghali JK, Liebson PR. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation. 2001;104:779–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Katz AM. Ernest Henry Starling, his predecessors, and the “law of the heart”. Circulation. 2002;106:2986–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Starling EH. The Linacre lecture on the law of the heart. In: Chapman CB, Mitchell JH, editors. Starling on the heart. London: Dawsons of Pall Mall; 1965. p. 119–47.Google Scholar
  22. 22.
    Ross J Jr, Franklin D, Sasayama S. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur J Cardiol. 1976;4(Suppl):77–86.PubMedGoogle Scholar
  23. 23.
    Julian FJ, Morgan DL. The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol. 1979;293:379–92.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fuchs F, Smith SH. Calcium, cross-bridges, and the Frank-Starling relationship. News Physiol Sci. 2001;16:5–10.PubMedGoogle Scholar
  25. 25.
    Fuster V, Walsh R. Hurst’s the heart, vol. 1. 13th ed. Harrington: McGraw Hill; 2011.Google Scholar
  26. 26.
    Plnsky PR. Hemodynamic evaluation and monitoring in the ICU. Chest. 2007;132:2020–9.CrossRefGoogle Scholar
  27. 27.
    Morris AH, Chapman RH, Gardner RM. Frequency of technical problems encountered in the measurement of pulmonary artery wedge pressure. Crit Care Med. 1984;12:164–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264:2928–32.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Jellinek H, Krafft P, Fitzgerald RD, Schwarz S, Pinsky MR. Right atrial pressure predicts hemodynamic response to apneic positive airway pressure. Crit Care Med. 2000;28(3):672–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Pinsky MR, Brochard L, Mancebo J. Applied physiology in intensive care medicine. Berlin: Springer; 2006.CrossRefGoogle Scholar
  31. 31.
    Wong DH, O’Connor D, Tremper KK, Zaccari J, Thompson P, Hill D. Changes in cardiac output after acute blood loss and position change in man. Crit Care Med. 1989;17:979–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Cheatham ML, Nelson LD, Chang MC, Safcsak K. Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Crit Care Med. 1998;26(11):1801–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Diebel L, Wilson RF, Heins J, Larky H, Warsow K, Wilson S. End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma. 1994;37(6):950–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Kraut EJ, Owings JT, Anderson JT, Hanowell L, Moore P. Right ventricular volumes overestimate left ventricular preload in critically ill patients. J Trauma. 1997;42(5):839–46.PubMedCrossRefGoogle Scholar
  36. 36.
    Tousignant CP, Walsh F, Mazer CD. TEE and preload assessment in critically ill patients. Anesthesiol Analg. 2000;90:351–5.Google Scholar
  37. 37.
    Loubieres Y, Vieillard-Baron A, Beauchet A, Fourme T, Page B, Jardin F. Echocardiographic evaluation of left ventricular function in critically ill patients: dynamic loading challenge using medical antishock trousers. Chest. 2000;118:1718–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoeft A, Schorn B, Weyland A, Scholz M, Buhre W, Stepanek E, Allen SJ, Sonntag H. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology. 1994;81:76–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Buhre W, Buhre K, Kazmaier S, Sonntag H, Weylandà A. Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol. 2001;18:662–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Sakka SG, Meier-Hellmann A. Evaluation of cardiac output and cardiac preload. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer; 2000. p. 671–9.Google Scholar
  41. 41.
    Barash PG, Cullen BF, Stoelting RK, editors. Clinical anesthesia. Philadelphia: Lippincott Williams & Wilkins; 2009.Google Scholar
  42. 42.
    McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258–61.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Marik ME. Pulmonary artery catheterization and esophageal Doppler monitoring in the ICU. Chest. 1999;116:1085–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Manzone TA, Dam HQ, Soltis D, Sagar VV. Blood volume analysis: a new technique and new clinical interest reinvigorate a classic study. J Nucl Med Technol. 2007;35:55–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Weyer S, Zink MD, Wartzek T, Leicht L, Mischke K, Vollmer T, Leonhardt S. Bioelectrical impedance spectroscopy as a fluid management system in heart failure. Physiol Meas. 2014;35:917–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Zile MR, Sharma V, Johnson JW, Warman EN, Baicu CF, Bennett TD. Prediction of all-cause mortality based on the direct measurement of intrathoracic impedance. Circ Heart Fail. 2016;9:e002761.Google Scholar
  47. 47.
    Grinstein J, Rodgers D, Kalantari S, Sayer G, Kim GH, Sarswat N, Adatya S, Ota T, Jeevanandam V, Burkhoff D, Uriel N. HVAD waveform analysis as a noninvasive marker of pulmonary capillary wedge pressure: a first step toward the development of a smart left ventricular assist device pump. ASAIO J. 2018;64:10–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and devices. 2nd ed. New York: Springer; 2009.Google Scholar
  49. 49.
    Atchabahian A, Gupta R. The Anesthesia Guide. New York: McGraw-Hill Medical, 2013.Google Scholar
  50. 50.
    Reddy YNV, El-Sabbagh A, Nishimura RA. Comparing pulmonary arterial wedge pressure and left ventricular end diastolic pressure for assessment of left-sided filling pressures. JAMA Cardiol. 2018;3:453–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Loushin MK, Quill JL, Iaizzo PA. Mechanical aspects of cardiac performance. In: Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and devices. 2nd ed. New York: Springer; 2009. p. 271–96.CrossRefGoogle Scholar
  52. 52.
    Ross J. Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J Am Coll Cardiol. 1985;5:811.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaplan JL. Kaplan’s cardiac anesthesia. 7th ed. Amsterdam: Elsevier; 2016.Google Scholar

Suggested Reading

  1. Ahrens TS, Taylor LA. Hemodynamic waveform analysis. Philadelphia: WB Saunders; 1992. Chapters 2 and 3.Google Scholar
  2. Daily EK, Schoroeder JS. Techniques in bedside hemodynamic monitoring. 5th ed. St. Louis: Mosby; 1994.Google Scholar
  3. Fuster V, Walsh R. Hurst’s the heart, vol. 1. 13th ed. McGraw Hill: Harrington; 2011. Part 2, Chapters 5.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of CardiologyTufts Medical CenterBostonUSA

Personalised recommendations