Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 935))

  • 1286 Accesses

Abstract

Video stabilization methods cannot compensate entire unwanted motions of an unstable video. In this paper, we present a new performance metric which can effectively measure the stability of a video. Our hypothesis is that in case of non dynamic background, the background motion is zero without the foregrounds of a stable video when a video taken by a fixed camera. Firstly, the foregrounds of a stabilized video are discarded, then, each background pixel motion is determined between the two consecutive background frames in two directions separately, afterwards, an average motion of each pixel is computed. These mean motions determine the stability of a video. The more unstable video will have more background motions. The background motion is a criterion to evaluate the stability of a video. The experimental results prove the efficacy of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mean Displacement Error.

  2. 2.

    Average Mean Displacement Error.

References

  1. Zhang, C., Chockalingam, P., Kumar, A., Burt, P., Lakshmikumar, A.: Qualitative assessment of video stabilization and mosaicking systems. In: IEEE Workshop on Applications of Computer Vision WACV 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  2. Baker, S., Bennett, E., Kang, S.B., Szeliski, R.: Removing rolling shutter wobble. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE (2010)

    Google Scholar 

  3. Liu, S., Wang, Y., Yuan, L., Bu, J., Tan, P., Sun, J.: Video stabilization with a depth camera. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 89–95. IEEE (2012)

    Google Scholar 

  4. Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM Trans. Graph. (TOG) 32(4), 78 (2013)

    Google Scholar 

  5. Kopf, J.: 360 video stabilization. ACM Trans. Graph. (TOG) 35(6), 195 (2016)

    Article  Google Scholar 

  6. Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3D video stabilization. In: ACM Transactions on Graphics (TOG), vol. 28, p. 44. ACM (2009)

    Google Scholar 

  7. Marcenaro, L., Vernazza, G., Regazzoni, C.S.: Image stabilization algorithms for video-surveillance applications. In: Proceedings of 2001 International Conference on Image Processing, vol. 1, pp. 349–352. IEEE (2001)

    Google Scholar 

  8. Niskanen, M., Silvén, O., Tico, M.: Video stabilization performance assessment. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 405–408. IEEE (2006)

    Google Scholar 

  9. Liu, S., Tan, P., Yuan, L., Sun, J., Zeng, B.: Meshflow: minimum latency online video stabilization. In: European Conference on Computer Vision, pp. 800–815. Springer (2016)

    Google Scholar 

  10. Zhang, L., Chen, X.Q., Kong, X.Y., Huang, H.: Geodesic video stabilization in transformation space. IEEE Trans. Image Process. 26(5), 2219–2229 (2017)

    Article  MathSciNet  Google Scholar 

  11. Liu, F., Gleicher, M., Wang, J., Jin, H., Agarwala, A.: Subspace video stabilization. ACM Trans. Graph. (TOG) 30(1), 4 (2011)

    Article  Google Scholar 

  12. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.Y.: Full-frame video stabilization with motion inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1150–1163 (2006)

    Article  Google Scholar 

  13. Safdarnejad, S.M., Atoum, Y., Liu, X.: Temporally robust global motion compensation by keypoint-based congealing. In: European Conference on Computer Vision, pp. 101–119. Springer (2016)

    Google Scholar 

  14. Grundmann, M., Kwatra, V., Castro, D., Essa, I.: Calibration-free rolling shutter removal. In: 2012 IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2012)

    Google Scholar 

  15. Forssén, P.E., Ringaby, E.: Rectifying rolling shutter video from hand-held devices. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 507–514. IEEE (2010)

    Google Scholar 

  16. Karpenko, A., Jacobs, D., Baek, J., Levoy, M.: Digital video stabilization and rolling shutter correction using gyroscopes. CSTR 1, 2 (2011)

    Google Scholar 

  17. Morimoto, C., Chellappa, R.: Evaluation of image stabilization algorithms. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 2789–2792. IEEE (1998)

    Google Scholar 

  18. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)

    Article  MathSciNet  Google Scholar 

  19. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Scandinavian Conference on Image Analysis, pp. 363–370. Springer (2003)

    Google Scholar 

  20. Opencv: Optical flow. https://docs.opencv.org/3.3.1/d7/d8b/tutorial_py_lucas_kanade.html. Accessed 03 Aug 2018

  21. changedetection.net. http://www.changedetection.net/. Accessed 08 Aug 2018

  22. Video database. http://liushuaicheng.org/SIGGRAPH2013/database.html. Accessed 21 Feb 2018

  23. Tanakian, M., Rezaei, M., Mohanna, F.: Camera motion modeling for video stabilization performance assessment. In: 2011 7th Iranian Machine Vision and Image Processing (MVIP), pp. 1–4. IEEE (2011)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Qu, H., Song, L., Xue, G.: Shaking video synthesis for video stabilization performance assessment. In: Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2013)

    Google Scholar 

  26. Zhai, B., Zheng, J., Wang, Y., Zhang, C.: A multi-scale evaluation method for motion filtering in digital image stabilization. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 682–688. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea government (MSIT) (Tech Commercialization Supporting Business based on Research Institute-Academic Cooperation system).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Nam Huh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, M.A., Huh, EN. (2019). A Novel Performance Metric for the Video Stabilization Method. In: Lee, S., Ismail, R., Choo, H. (eds) Proceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM) 2019. IMCOM 2019. Advances in Intelligent Systems and Computing, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-19063-7_38

Download citation

Publish with us

Policies and ethics