Skip to main content

Flexible Deployment System Based on IoT Standards Using Containers in Smart Factory Environments

  • Conference paper
  • First Online:
Book cover Proceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM) 2019 (IMCOM 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 935))

Abstract

The Internet of Things in the Smart Factory is the most fundamental and important element for building the cyber physical system. The Internet of Things performs a key function that connects the physical and digital components of a manufacturing site and can be formed in a variety of structures. The system of smart factory needs to be designed by adopting IoT standards in order to have a reliable structure. System designers can adopt structures based on IoT standards to implement stable and reliable systems, but they must perform cumbersome tasks to comply with the standards. This paper proposes implementation of IoT system through deployment of docker containers, which is a virtualization technology, and ensures stability and flexible connectivity of rapid deployment and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klaus, S.: The Forth Industrial Revolution. World Economic Forum (2011)

    Google Scholar 

  2. Lee, H.: Embedded system framework and its implementation for device-to-device intelligent communication of manufacturing IoT device considering smart factory. J. Korean Inst. Intell. Syst. 27(5), 459–465 (2017)

    Article  Google Scholar 

  3. Wu, G., Shilpa, T., Kerstin, J., Nageen, H., Kevin, D.J.: M2M: from mobile to embedded internet. IEEE Commun. Mag. 49(4), 36–43 (2011)

    Article  Google Scholar 

  4. Song, J., Andreas, K., Mischa, S., Piotr, S.: Connecting and managing M2M devices in the future internet. Mobile Netw. Appl. 19(1), 4–17 (2014)

    Article  Google Scholar 

  5. Husain, S., Athul, P., Andreas, K., Apostolos, P., JaeSeung, S.: Recent trends in standards related to the internet of things and machine-to-machine communications. J. Inf. Commun. Convergence Eng. 12(4), 228–236 (2014)

    Google Scholar 

  6. Sheng, Z., Shusen, Y., Yifan, Y., Athanasios, V., Julie, M., Kin, L.: A survey on the IETF protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wirel. Commun. 20(6), 91–98 (2013)

    Article  Google Scholar 

  7. Xavier, M.G., Marcelo, V.N., Cesar, A.F.D.R.: A performance comparison of container-based virtualization systems for mapreduce clusters. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 299–306 (2014)

    Google Scholar 

  8. Brettel, M., Niklas, F., Michael, K., Marius, R.: How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 8(1), 37–44 (2014)

    Google Scholar 

  9. Li, F., Jiafu, W., Ping, Z., Di, L., Daqiang, Z., Keliang, Z.: Usage-specific semantic integration for cyber-physical robot systems. ACM Trans. Embed. Comput. Syst. (TECS) 15(3) (2016)

    Article  Google Scholar 

  10. Wan, J., Daqiang, Z., Yantao, S., Kai, L., Caifeng, Z., Hu, C.: VCMIA: a novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Netw. Appl. 19(2), 153–160 (2014)

    Article  Google Scholar 

  11. Wan, J., Hehua, Y., Di, L., Keliang, Z., Lu, Z.: Cyber-physical systems for optimal energy management scheme of autonomous electric vehicle. Comput. J. 56(8), 947–956 (2013)

    Article  Google Scholar 

  12. Lee, J., Behrad, B., Hung-An, K.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  13. Zhou, J.: Intelligent manufacturing-main direction of “Made in China 2025”. China Mech. Eng. 26(17), 2273–2284 (2015)

    Google Scholar 

  14. Rose, K., Scott, E., Lyman, C.: The internet of things: an overview. In: The Internet Society (ISOC), pp. 1–50 (2015)

    Google Scholar 

  15. Stankovic, J.A.: Research directions for the internet of things. IEEE Internet Things J. 1(1), 3–9 (2014)

    Article  MathSciNet  Google Scholar 

  16. Colombo, A.W., Stamatis, K.: Towards the factory of the future: a service-oriented cross-layer infrastructure. In: ICT Shaping the World: A Scientific View, vol. 65, p. 81 (2009)

    Google Scholar 

  17. Hellinger, A., Heinrich, S.: Cyber-Physical Systems. Driving force for innovation in mobility, health, energy and production. Acatech Position Paper, National Academy of Science and Engineering, p. 2 (2011)

    Google Scholar 

  18. Lin, S., Bradford, M., Jacques, D., Rajive, J., Paul, D., Amine, C., Reinier, T.: Industrial internet reference architecture. Industrial Internet Consortium (IIC), Technical report (2015)

    Google Scholar 

  19. Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2015)

    Article  Google Scholar 

  20. Leitao, P., Stamatis, K., Luis, R., Jay, L., Thomas, S., Armando, W.C.: Smart agents in industrial cyber-physical systems. Proc. IEEE 104(5), 1086–1101 (2016)

    Article  Google Scholar 

  21. Felter, W., Alexandre, F., Ram, R., Juan, R.: An updated performance comparison of virtual machines and linux containers. In: 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172 (2015)

    Google Scholar 

  22. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE Access 5, 8835–8850 (2017)

    Article  Google Scholar 

  23. Morabito, R., Vittorio, C., Aaron, Y.D., Nicklas, B., Jorg, O.: Consolidate IoT edge computing with lightweight virtualization. IEEE Network 32(1), 102–111 (2018)

    Article  Google Scholar 

  24. Pérez, A., Germán, M., Miguel, C., Amanda, C.: Serverless computing for container-based architectures. Future Gener. Comput. Syst. 83, 50–59 (2018)

    Article  Google Scholar 

  25. Han-Chuan, H., Jiann-Liang, C., Abderrahim, B.: 5G virtualized multi-access edge computing platform for IoT applications. J. Netw. Comput. Appl. 115, 94–102 (2018)

    Article  Google Scholar 

  26. Jaewoo, K., Jaiyong, L., Jaeho, K., Jaeseok, Y.: M2M service platforms: survey, issues, and enabling technologies. IEEE Commun. Surv. Tutorials 16(1), 61–76 (2014)

    Article  Google Scholar 

  27. Martin, F., Apostolos, P., Anett, S., JaeSeung, S.: Horizontal M2M platforms boost vertical industry: effectiveness study for building energy management systems. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 15–20 (2014)

    Google Scholar 

  28. Jorg, S., Guang, L., Philip, J., Francois, E., JaeSeung, S.: Toward a standardized common M2M service layer platform: introduction to oneM2M. IEEE Wirel. Commun. 21(3), 20–26 (2014)

    Article  Google Scholar 

  29. Markus, G., Stephan, H., Chris, I., Leon, U.: Information models in OPC UA and their advantages and disadvantages. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2017)

    Google Scholar 

  30. Documents for oneM2M Architecture Information. https://www.etsi.org/deliver/etsits/118100118199/118101/02.10.0060/ts118101v021000p.pdf. Accessed 18 July 2018

Download references

Acknowledgement

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-08-01417) supervised by the IITP (Institute for Information & communications Technology Promotion).

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03933828).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongpil Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Um, C., Lee, J., Jeong, J. (2019). Flexible Deployment System Based on IoT Standards Using Containers in Smart Factory Environments. In: Lee, S., Ismail, R., Choo, H. (eds) Proceedings of the 13th International Conference on Ubiquitous Information Management and Communication (IMCOM) 2019. IMCOM 2019. Advances in Intelligent Systems and Computing, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-19063-7_2

Download citation

Publish with us

Policies and ethics