Skip to main content

Biomedical Applications of MXenes

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

The rapid pace of innovation in the fields of biomedicine and nanotechnology has generated a wide variety of novel nanomaterial-based platforms for biomedical applications. Based on the nanometer-thin two-dimensional planar morphology, the high effective surface area, the abundant surface chemistry, and the favorable physicochemical properties, there is a growing interest on exploring the potentials of MXenes at the interface with living systems. In this chapter, we review the state of the art and discuss the promise of MXenes for biomedical applications. Specifically, we first describe the properties of MXenes that make them particularly attractive and review the recent developments, with specific focus on the areas of biosensing, cancer theranostics, and antimicrobial treatments. Finally, we discuss the biocompatibility of MXenes based on the findings that have been reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chimene, D., Alge, D. L., & Gaharwar, A. K. (2015). Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Advanced Materials, 27, 7261–7284.

    Article  CAS  Google Scholar 

  2. Chen, Y., Tan, C., Zhang, H., & Wang, L. (2015). Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 44, 2681–2701.

    Article  CAS  Google Scholar 

  3. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    CAS  Google Scholar 

  4. Er, D., Li, J., Naguib, M., Gogotsi, Y., & Shenoy, V. B. (2014). Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Applied Materials & Interfaces, 6, 11173–11179.

    Article  CAS  Google Scholar 

  5. Tang, Y., Guo, Y., Zhang, L., Cai, J., & Yang, P. (2014). A novel electrochemical biosensor for monitoring protein nitration damage affected by NaNO2/hemin/H2O2. Biosensors & Bioelectronics, 54, 628–633.

    Article  CAS  Google Scholar 

  6. Liu, H., Duan, C., Yang, C., Shen, W., Wang, F., & Zhu, Z. (2015). A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 218, 60–66.

    Article  CAS  Google Scholar 

  7. Wang, G.-X., Bao, W.-J., Wang, J., Lu, Q.-Q., & Xia, X.-H. (2013). Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochemistry Communications, 35, 146–148.

    Article  CAS  Google Scholar 

  8. Wu, J.-F., Xu, M.-Q., & Zhao, G.-C. (2010). Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochemistry Communications, 12, 175–177.

    Article  CAS  Google Scholar 

  9. Tao, H., Wang, J., Ou, Y., Zhu, W., Ling, H., Fang, W., & Tu, D. (2014). Construction and direct electrochemistry of hemoglobin-intercalated titanate nanosheets. Nanoscience and Nanotechnology Letters, 6, 99–105.

    Article  CAS  Google Scholar 

  10. Wang, F., Yang, C., Duan, C., Xiao, D., Tang, Y., & Zhu, J. (2014). An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. Journal of the Electrochemical Society, 162, B16–B21.

    Article  CAS  Google Scholar 

  11. Yoo, E.-H., & Lee, S.-Y. (2010). Glucose biosensors: An overview of use in clinical practice. Sensors (Basel), 10, 4558–4576.

    Article  Google Scholar 

  12. Rakhi, R. B., Nayak, P., Xia, C., & Alshareef, H. N. (2016). Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific Reports, 6, 36422.

    Article  CAS  Google Scholar 

  13. Xu, B., Zhu, M., Zhang, W., Zhen, X., Pei, Z., Xue, Q., Zhi, C., & Shi, P. (2016). Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Advanced Materials, 28, 3333–3339.

    Article  CAS  Google Scholar 

  14. Liu, S.-Q., Sun, W.-H., & Hu, F.-T. (2012). Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sensors and Actuators B: Chemical, 173, 497–504.

    Article  CAS  Google Scholar 

  15. Kim, Y.-R., Bong, S., Kang, Y.-J., Yang, Y., Mahajan, R. K., Kim, J. S., & Kim, H. (2010). Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors & Bioelectronics, 25, 2366–2369.

    Article  CAS  Google Scholar 

  16. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26, 1678–1698.

    Article  CAS  Google Scholar 

  17. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human – Motion detection. Nature Nanotechnology, 6, 296–301.

    Google Scholar 

  18. Yin, B., Wen, Y., Hong, T., Xie, Z., Yuan, G., Ji, Q., & Jia, H. (2017). Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Applied Materials & Interfaces, 9, 32054–32064.

    Article  CAS  Google Scholar 

  19. Cai, Y., Shen, J., Ge, G., Zhang, Y., Jin, W., Huang, W., Shao, J., Yang, J., & Dong, X. (2018). Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano, 12, 56–62.

    Article  CAS  Google Scholar 

  20. Ma, Y., Liu, N., Li, L., Hu, X., Zou, Z., Wang, J., Luo, S., & Gao, Y. (2017). A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 8, 1207.

    Article  CAS  Google Scholar 

  21. National Cancer Institute (2018) Cancer statistics. https://www.cancer.gov/about-cancer/understanding/statistics.

    Google Scholar 

  22. Jones, E. L., Oleson, J. R., Prosnitz, L. R., Samulski, T. V., Vujaskovic, Z., Yu, D., Sanders, L. L., & Dewhirst, M. W. (2005). Randomized trial of hyperthermia and radiation for superficial tumors. Journal of Clinical Oncology, 23, 3079–3085.

    Article  Google Scholar 

  23. Smith, A. M., Mancini, M. C., & Nie, S. (2009). Bioimaging: Second window for in vivo imaging. Nature Nanotechnology, 4, 710–711.

    Article  CAS  Google Scholar 

  24. Tsai, M. F., Chang, S. H. G., Cheng, F. Y., Shanmugam, V., Cheng, Y. S., Su, C. H., & Yeh, C. S. (2013). Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano, 7, 5330–5342.

    Article  CAS  Google Scholar 

  25. Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., & West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 100, 13549–13554.

    Article  CAS  Google Scholar 

  26. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239, 129–135.

    Article  CAS  Google Scholar 

  27. Moon, H. K., Lee, S. H., & Choi, H. C. (2009). In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 3, 3707–3713.

    Article  CAS  Google Scholar 

  28. Lee, C., Kwon, W., Beack, S., Lee, D., Park, Y., Kim, H., Hahn, S. K., Rhee, S.-W., & Kim, C. (2016). Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics, 6, 2196–2208.

    Article  CAS  Google Scholar 

  29. Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.-T., & Liu, Z. (2010). Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 10, 3318–3323.

    Article  CAS  Google Scholar 

  30. Zha, Z., Yue, X., Ren, Q., & Dai, Z. (2013). Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced Materials, 25, 777–782.

    Article  CAS  Google Scholar 

  31. Cheng, L., Yang, K., Chen, Q., & Liu, Z. (2012). Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano, 6, 5605–5613.

    Article  CAS  Google Scholar 

  32. Zhou, M., Zhang, R., Huang, M., Lu, W., Song, S., Melancon, M. P., Tian, M., Liang, D., & Li, C. (2010). A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. Journal of the American Chemical Society, 132, 15351–15358.

    Article  CAS  Google Scholar 

  33. Santra, S., Kaittanis, C., Grimm, J., & Perez, J. M. (2009). Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small, 5, 1862–1868.

    Article  CAS  Google Scholar 

  34. Cheng, L., Liu, J., Gu, X., et al. (2014). PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 26, 1886–1893.

    Article  CAS  Google Scholar 

  35. Yin, W., Yan, L., Yu, J., et al. (2014). High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano, 8, 6922–6933.

    Article  CAS  Google Scholar 

  36. Sun, C., Wen, L., Zeng, J., Wang, Y., Sun, Q., Deng, L., Zhao, C., & Li, Z. (2016). One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 91, 81–89.

    Article  CAS  Google Scholar 

  37. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2016). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.

    Article  CAS  Google Scholar 

  38. Chen, Y., Wang, L., & Shi, J. (2016). Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today, 11, 292–308.

    Article  CAS  Google Scholar 

  39. Zeng, J., Goldfeld, D., & Xia, Y. (2013). A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angewandte Chemie International Edition, 52, 4169–4173.

    Article  CAS  Google Scholar 

  40. Hessel, C. M., Pattani, V. P., Rasch, M., Panthani, M. G., Koo, B., Tunnell, J. W., & Korgel, B. A. (2011). Copper selenide nanocrystals for photothermal therapy. Nano Letters, 11, 2560–2566.

    Article  CAS  Google Scholar 

  41. Dai, C., Lin, H., Xu, G., Liu, Z., Wu, R., & Chen, Y. (2017). Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chemistry of Materials, 29, 8637–8652.

    Article  CAS  Google Scholar 

  42. Fraum, T. J., Ludwig, D. R., Bashir, M. R., & Fowler, K. J. (2017). Gadolinium-based contrast agents: A comprehensive risk assessment. Journal of Magnetic Resonance Imaging, 46, 338–353.

    Article  Google Scholar 

  43. FDA. (2017). FDA Drug Safety Communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings. https://www.fda.gov/Drugs/DrugSafety/ucm589213.htm.

    Google Scholar 

  44. Lee, N., Choi, S. H., & Hyeon, T. (2013). Nano-sized CT contrast agents. Advanced Materials, 25, 2641–2660.

    Article  CAS  Google Scholar 

  45. Dai, C., Chen, Y., Jing, X., Xiang, L., Yang, D., Lin, H., Liu, Z., Han, X., & Wu, R. (2017). Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano, 11, 12696–12712.

    Google Scholar 

  46. Liu, Z., Lin, H., Zhao, M., Dai, C., Zhang, S., Peng, W., & Chen, Y. (2018). 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 8, 1648–1664.

    Google Scholar 

  47. Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., Huang, W., Chen, P., Shao, J., & Dong, X. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9, 40077–40086.

    Google Scholar 

  48. Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 306, 1701313–1701394.

    Google Scholar 

  49. Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews. Cancer, 3, 380–387.

    Article  CAS  Google Scholar 

  50. Ge, J., Lan, M., Zhou, B., et al. (2014). A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 5, 4596.

    Article  CAS  Google Scholar 

  51. Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J., & Xie, Y. (2015). Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 137, 11376–11382.

    Article  CAS  Google Scholar 

  52. Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139, 16235–16247.

    Article  CAS  Google Scholar 

  53. Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 12, 3931–3946.

    Google Scholar 

  54. Musee, N., Thwala, M., & Nota, N. (2011). The antibacterial effects of engineered nanomaterials: Implications for wastewater treatment plants. Journal of Environmental Monitoring, 13, 1164–1183.

    Google Scholar 

  55. Jastrzebska, A., Karwowska, E., Basiak, D., Zawada, A., Ziemkowska, W., Wojciechowski, T., Jakubowska, D., & Olszyna, A. (2017). Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. International Journal of Electrochemical Science, 12, 2159–2172.

    Google Scholar 

  56. Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10, 3674–3684.

    Google Scholar 

  57. Rasool, K., Mahmoud, K. A., Johnson, D. J., Helal, M., Berdiyorov, G. R., & Gogotsi, Y. (2017). Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Scientific Reports, 7, 1598.

    Google Scholar 

  58. Chen, K., Chen, Y., Deng, Q., Jeong, S.-H., Jang, T.-S., Du, S., Kim, H.-E., Huang, Q., & Han, C.-M. (2018). Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters, 229, 114–117.

    Article  CAS  Google Scholar 

  59. Meng, F., Seredych, M., Chen, C., et al. (2018). MXene sorbents for removal of urea from dialysate: A step toward the wearable artificial kidney. ACS Nano, 12, 10518–10528.

    Article  CAS  Google Scholar 

  60. Chen, X., Sun, X., Xu, W., Pan, G., Zhou, D., Zhu, J., Wang, H., Bai, X., Dong, B., & Song, H. (2017). Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots for the intracellular pH sensor. Nanoscale, 1111–1118.

    Google Scholar 

  61. Zheng, J., Wang, B., Ding, A., Weng, B., & Chen, J. (2018). Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. Journal of Electroanalytical Chemistry, 816, 189–194.

    Article  CAS  Google Scholar 

  62. Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., Mahmoud, K. A., & Tkac, J. (2018). Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors and Actuators B: Chemical, 263, 360–368.

    Google Scholar 

  63. Driscoll, N., Richardson, A. G., Maleski, K., et al. (2018). Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano, 12, 10419–10429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitale, F., Driscoll, N., Murphy, B. (2019). Biomedical Applications of MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_26

Download citation

Publish with us

Policies and ethics