Skip to main content

MXenes for Environmental and Water Treatment Applications

  • Chapter
  • First Online:
Book cover 2D Metal Carbides and Nitrides (MXenes)

Abstract

Since the first discovery of two-dimensional (2D) MXenes, about 30 different structures of this group have been synthesized to date. Owing to their unique mechanical, chemical, and electrical properties, many successful attempts have been focused on using MXenes in water treatment and environmental remediation applications. However, more efforts are still needed to address the stability, biocompatibility, and reusability of MXenes in aqueous media. This chapter discusses the latest research progress in the application of MXenes in pollutants adsorption/remediation, photodegradation, and membrane separation. An overview is given on recent experimental/computational attempts to explore the potential of MXenes in water treatment applications and highlight the challenges and opportunities of these advanced 2D architectures. This chapter highlights new avenues for more innovative developments of MXene materials in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei, J.-C., Zhang, X., & Zhou, Z. (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers of Physics, 10(3), 276–286.

    Article  Google Scholar 

  2. Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials., 2(12), 1600255-n/a.

    Article  CAS  Google Scholar 

  3. Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., et al. (2014). Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 50(67), 9517–9520.

    Article  CAS  Google Scholar 

  4. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., et al. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.

    Article  CAS  Google Scholar 

  5. Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.

    Article  CAS  Google Scholar 

  6. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  7. Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N. S., Estili, M., et al. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), 2185–2192.

    Article  CAS  Google Scholar 

  8. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., et al. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9(10), 9507–9516.

    Article  CAS  Google Scholar 

  9. Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications., 2(4), 133–137.

    Article  CAS  Google Scholar 

  10. Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 16(17), 7841–7849.

    Article  CAS  Google Scholar 

  11. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.

    Article  CAS  Google Scholar 

  12. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78.

    Article  CAS  Google Scholar 

  13. Alhabeb, M., Maleski, K., Mathis, T. S., Sarycheva, A., Hatter, C. B., Uzun, S., et al. (2018). Selective etching of silicon from Ti3SiC2 (MAX) produces 2D titanium carbide (MXene). Angewandte Chemie International Edition, 57(19), 5444–5448.

    Article  CAS  Google Scholar 

  14. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.

    Article  CAS  Google Scholar 

  15. Sun, Z., Music, D., Ahuja, R., Li, S., & Schneider, J. M. (2004). Bonding and classification of nanolayered ternary carbides. Physical Review B, 70(9), 092102.

    Article  CAS  Google Scholar 

  16. Xiong, D., Li, X., Bai, Z., & Lu, S. (2018). Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 14, 1703419.

    Article  CAS  Google Scholar 

  17. Jun, B. M., Kim, S., Heo, J., Park, C. M., Her, N., Jang, M., Huang, Y., Han, J., & Yoon, Y. (2019). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 12, 471–487.

    Article  CAS  Google Scholar 

  18. Zhang, X., Zhang, Z., & Zhou, Z. (2018). MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 27, 73–85.

    Article  Google Scholar 

  19. Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.

    Article  CAS  Google Scholar 

  20. Xie, X., Xue, Y., Li, L., Chen, S., Nie, Y., Ding, W., et al. (2014). Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 6(19), 11035–11040.

    Article  CAS  Google Scholar 

  21. Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1(3), 589–594.

    Article  CAS  Google Scholar 

  22. Lu, C., Tranca, D., Zhang, J., Rodrıguez Hernández, F., Su, Y., Zhuang, X., et al. (2017). Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano, 11(4), 3933–3942.

    Article  CAS  Google Scholar 

  23. Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al. (2018). Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors and Actuators B: Chemical, 263, 360–368.

    Article  CAS  Google Scholar 

  24. Liu, H., Duan, C., Yang, C., Shen, W., Wang, F., & Zhu, Z. (2015). A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors and Actuators B: Chemical, 218, 60–66.

    Article  CAS  Google Scholar 

  25. Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.

    Article  CAS  Google Scholar 

  26. Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7, 1701394.

    Article  CAS  Google Scholar 

  27. Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., et al. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9(46), 40077–40086.

    Article  CAS  Google Scholar 

  28. Yu, X., Cai, X., Cui, H., Lee, S.-W., Yu, X.-F., & Liu, B. (2017). Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9(45), 17859–17864.

    Article  CAS  Google Scholar 

  29. Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano, 11(9), 8892–8900.

    Article  CAS  Google Scholar 

  30. Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 7(89), 56204–56210.

    Article  CAS  Google Scholar 

  31. Pandey, R. P., Rasool, K., Madhavan, V. E., Aissa, B., Gogotsi, Y., & Mahmoud, K. A. (2018). Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. Journal of Materials Chemistry A, 6(8), 3522–3533.

    Article  CAS  Google Scholar 

  32. Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., & Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. The Journal of Physical Chemistry Letters., 6(20), 4026–4031.

    Article  CAS  Google Scholar 

  33. Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2017). Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chemistry & Engineering, 5(12), 11481–11488.

    Article  CAS  Google Scholar 

  34. Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., et al. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 7(3), 1795–1803.

    Article  CAS  Google Scholar 

  35. Srimuk, P., Kaasik, F., Kruner, B., Tolosa, A., Fleischmann, S., Jackel, N., et al. (2016). MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 4(47), 18265–18271.

    Article  CAS  Google Scholar 

  36. Ng, V. M. H., Huang, H., Zhou, K., Lee, P. S., Que, W., Xu, J. Z., et al. (2017). Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. Journal of Materials Chemistry A, 5(7), 3039–3068.

    Article  CAS  Google Scholar 

  37. Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., & Gogotsi, Y. (2014). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2(35), 14334–14338.

    Article  CAS  Google Scholar 

  38. Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M. R., Gogotsi, Y., et al. (2014). In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. Journal of Materials Chemistry A, 2(35), 14339–14343.

    Article  CAS  Google Scholar 

  39. Mahmoud, K. A., Mansoor, B., Mansour, A., & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208–225.

    Article  CAS  Google Scholar 

  40. Wu, X., Hao, L., Zhang, J., Zhang, X., Wang, J., & Liu, J. (2016). Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 515, 175–188.

    Article  CAS  Google Scholar 

  41. Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., & Wang, H. (2017). A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie, International Edition, 56(7), 1825–1829.

    Article  CAS  Google Scholar 

  42. Liu, G., Shen, J., Liu, Q., Liu, G., Xiong, J., Yang, J., et al. (2018). Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 548, 548–558.

    Article  CAS  Google Scholar 

  43. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.

    Article  CAS  Google Scholar 

  44. Berdiyorov, G. R., Madjet, M. E., & Mahmoud, K. A. (2016). Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Applied Physics Letters, 108(11), 113110.

    Article  CAS  Google Scholar 

  45. Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T=F, O and OH) MXene. Applied Surface Science, 416, 725–730.

    Article  CAS  Google Scholar 

  46. Osti, N. C., Naguib, M., Ostadhossein, A., Xie, Y., Kent, P. R. C., Dyatkin, B., et al. (2016). Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Applied Materials & Interfaces, 8(14), 8859–8863.

    Article  CAS  Google Scholar 

  47. Ding, L., Wei, Y., Li, L., Zhang, T., Wang, H., Xue, J., et al. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 9(1), 155.

    Article  CAS  Google Scholar 

  48. Xu, K., Ji, X., Zhang, B., Chen, C., Ruan, Y., Miao, L., et al. (2016). Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study. Electrochimica Acta, 196, 75–83.

    Article  CAS  Google Scholar 

  49. Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10(3), 3674–3684.

    Article  CAS  Google Scholar 

  50. Jastrzębska, A., Karwowska, E., Basiak, D., Zawada, A., Ziemkowska, W., Wojciechowski, T., et al. (2017). Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM. International Journal of Electrochemical Science, 12, 2159–2172.

    Article  CAS  Google Scholar 

  51. Jastrzębska, A. M., Karwowska, E., Wojciechowski, T., Ziemkowska, W., Rozmysłowska, A., Chlubny, L., et al. (2019). The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. Journal of Materials Engineering and Performance, 28(3), 1272–1277.

    Article  CAS  Google Scholar 

  52. Rasool, K., Mahmoud, K. A., Johnson, D. J., Helal, M., Berdiyorov, G. R., & Gogotsi, Y. (2017). Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Scientific Reports, 7(1), 1598.

    Article  CAS  Google Scholar 

  53. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.

    Article  CAS  Google Scholar 

  54. Yang, K., & Ma, Y.-Q. (2010). Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology, 5, 579.

    Article  CAS  Google Scholar 

  55. Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7), 2064–2077.

    Article  CAS  Google Scholar 

  56. Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736.

    Article  CAS  Google Scholar 

  57. Romero-Vargas Castrillón, S., Perreault, F., de Faria, A. F., & Elimelech, M. (2015). Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environmental Science & Technology Letters, 2(4), 112–117.

    Article  CAS  Google Scholar 

  58. Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., et al. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.

    Article  CAS  Google Scholar 

  59. Chen, S., Quan, Y., Yu, Y.-L., & Wang, J.-H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science & Engineering, 3(3), 313–321.

    Article  CAS  Google Scholar 

  60. Gu, L., Wang, J., Cheng, H., Zhao, Y., Liu, L., & Han, X. (2013). One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Applied Materials & Interfaces, 5(8), 3085–3093.

    Article  CAS  Google Scholar 

  61. Tian, T., Shi, X., Cheng, L., Luo, Y., Dong, Z., Gong, H., et al. (2014). Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Applied Materials & Interfaces, 6(11), 8542–8548.

    Article  CAS  Google Scholar 

  62. Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134(40), 16909–16916.

    Article  CAS  Google Scholar 

  63. Wang, H., Wu, Y., Yuan, X., Zeng, G., Zhou, J., Wang, X., et al. (2018). Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Advanced Materials, 30, 1704561.

    Article  CAS  Google Scholar 

  64. Zhang, H., Yang, G., Zuo, X., Tang, H., Yang, Q., & Li, G. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4(33), 12913–12920.

    Article  CAS  Google Scholar 

  65. Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446–11452.

    Article  CAS  Google Scholar 

  66. Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28(24), 9026–9032.

    Article  CAS  Google Scholar 

  67. Xiong, K., Wang, P., Yang, G., Liu, Z., Zhang, H., Jin, S., et al. (2017). Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Scientific Reports, 7(1), 150e95.

    Article  CAS  Google Scholar 

  68. Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.

    Article  CAS  Google Scholar 

  69. Gao, Y., Wang, L., Zhou, A., Li, Z., Chen, J., Bala, H., et al. (2015). Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Materials Letters, 150, 62–64.

    Article  CAS  Google Scholar 

  70. Wang, H., Peng, R., Hood, Z. D., Naguib, M., Adhikari, S. P., & Wu, Z. (2016). Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9(12), 1490–1497.

    Article  CAS  Google Scholar 

  71. Yang, X. H., Yang, H. G., & Li, C. (2011). Controllable nanocarving of anatase TiO2 single crystals with reactive {001} facets. Chemistry--A European Journal, 17(24), 6615–6619.

    Article  CAS  Google Scholar 

  72. Yuan, Y.-J., Ye, Z.-J., Lu, H.-W., Hu, B., Li, Y.-H., Chen, D.-Q., et al. (2016). Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 6(2), 532–541.

    Article  CAS  Google Scholar 

  73. Peng, C., Yang, X., Li, Y., Yu, H., Wang, H., & Peng, F. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8(9), 6051–6060.

    Article  CAS  Google Scholar 

  74. Peng, C., Wang, H., Yu, H., & Peng, F. (2017). (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Materials Research Bulletin, 89, 16–25.

    Google Scholar 

  75. Ran, J., Gao, G., Li, F.-T., Ma, T.-Y., Du, A., & Qiao, S.-Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.

    Article  CAS  Google Scholar 

  76. Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  CAS  Google Scholar 

  77. Zhang, Q., Teng, J., Zou, G., Peng, Q., Du, Q., Jiao, T., et al. (2016). Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 8(13), 7085–7093.

    Article  CAS  Google Scholar 

  78. Zhang, Y.-J., Lan, J.-H., Wang, L., Wu, Q.-Y., Wang, C.-Z., Bo, T., et al. (2016). Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 308, 402–410.

    Article  CAS  Google Scholar 

  79. Yang, H. G., & Zeng, H. C. (2005). Synthetic architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2 nanocomposites. Journal of the American Chemical Society, 127(1), 270–278.

    Article  CAS  Google Scholar 

  80. Xing, J., Fang, W. Q., Li, Z., & Yang, H. G. (2012). TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency. Industrial & Engineering Chemistry Research, 51(11), 4247–4253.

    Article  CAS  Google Scholar 

  81. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., et al. (2014). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 136(11), 4113–4116.

    Article  CAS  Google Scholar 

  82. Guo, J., Peng, Q., Fu, H., Zou, G., & Zhang, Q. (2015). Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. The Journal of Physical Chemistry C., 119(36), 20923–20930.

    Article  CAS  Google Scholar 

  83. Zhang, Q., Du, Q., Hua, M., Jiao, T., Gao, F., & Pan, B. (2013). Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. Environmental Science & Technology, 47(12), 6536–6544.

    Article  CAS  Google Scholar 

  84. Wang, H., Wu, Y., Zhang, J., Li, G., Huang, H., Zhang, X., et al. (2015). Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Materials Letters, 160, 537–540.

    Article  CAS  Google Scholar 

  85. Guo, J., Fu, H., Zou, G., Zhang, Q., Zhang, Z., & Peng, Q. (2016). Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. Journal of Alloys and Compounds, 684, 504–509.

    Article  CAS  Google Scholar 

  86. Guo, X., Zhang, X., Zhao, S., Huang, Q., & Xue, J. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228–233.

    Article  CAS  Google Scholar 

  87. Zhang, Z., Li, H., Zou, G., Fernandez, C., Liu, B., Zhang, Q., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4(12), 6763–6771.

    Article  CAS  Google Scholar 

  88. Zou, G., Guo, J., Peng, Q., Zhou, A., Zhang, Q., & Liu, B. (2016). Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 4(2), 489–499.

    Article  CAS  Google Scholar 

  89. Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., et al. (2018). Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. Journal of Hazardous Materials, 344, 811–818.

    Article  CAS  Google Scholar 

  90. Zhang, Y.-J., Zhou, Z.-J., Lan, J.-H., Ge, C.-C., Chai, Z.-F., Zhang, P., et al. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572–578.

    Article  CAS  Google Scholar 

  91. Wang, L., Yuan, L., Chen, K., Zhang, Y., Deng, Q., Du, S., et al. (2016). Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 8(25), 16396–16403.

    Article  CAS  Google Scholar 

  92. Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., et al. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084–12087.

    Article  CAS  Google Scholar 

  93. Kulkarni, S., Misra, C. S., Gupta, A., Ballal, A., & Apte, S. K. (2016). Interaction of uranium with bacterial cell surfaces: Inferences from phosphatase-mediated uranium precipitation. Applied and Environmental Microbiology, 82(16), 4965–4974.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Qatar National Research Fund (A member of Qatar Foundation) through the NPRP grants # 9-254-2-120. The authors are thankful to S Buczek, Drexel University, for the valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasool, K., Pandey, R.P., Rasheed, P.A., Berdiyorov, G.R., Mahmoud, K.A. (2019). MXenes for Environmental and Water Treatment Applications. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_22

Download citation

Publish with us

Policies and ethics