Skip to main content

Electronic and Mechanical Properties of MXenes Derived from Single-Flake Measurements

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

MXenes are a large class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides that show a great promise for a broad spectrum of applications. More than 25 different MXenes have been already experimentally demonstrated, and many others have been studied theoretically; however, their intrinsic physical properties remain largely unexplored. Here we review the electrical measurements of bulk assemblies of MXene sheets and demonstrate that the results strongly depend not only on the MXene’s chemical composition and structure but also on the form of assembly (a filtered, spin-casted, or sprayed film, a pressed disc, a particle, etc.), as well as on the preparation and postprocessing methods and measurement conditions, which dictate the stacking of individual MXene sheets and the interflake resistances. These results show the importance of single-flake measurements for revealing the intrinsic properties of various MXene materials and their comparison with each other. Single-flake measurements have been shown imperative for a variety of other 2D materials but remain scarce for MXene monolayers and so far have been limited only to Ti3C2Tx. Electrical measurements of individual Ti3C2Tx monolayers showed their high conductivity of 4600 ± 1100 S/cm and field-effect electron mobility of 2.6 ± 0.7 cm2/ V · s. These measurements were further proved to be useful for comparing the efficiencies of different synthetic methods for preparing high-quality MXene materials and investigating the environmental stability and kinetics of oxidation of Ti3C2Tx flakes in humid air. Mechanical measurements of Ti3C2Tx monolayers revealed their high Young’s modulus of 0.33 ± 0.03 TPa, establishing their enormous potential for mechanically reinforced composites, protective coatings, and nanoresonators. These examples demonstrate the importance of single-flake physical measurements, which expand our understanding of MXenes and broaden the already impressive range of their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    CAS  Google Scholar 

  2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.

    Article  CAS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201–204.

    Article  CAS  Google Scholar 

  4. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699–712.

    Article  CAS  Google Scholar 

  5. Molle, A., Goldberger, J., Houssa, M., Xu, Y., Zhang, S.-C., & Akinwande, D. (2017). Buckled two-dimensional Xene sheets. Nature Materials, 16, 163–169.

    Article  CAS  Google Scholar 

  6. Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., Heinz, T. F., Hong, S. S., Huang, J., Ismach, A. F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V. V., Robinson, R. D., Ruoff, R. S., Salahuddin, S., Shan, J., Shi, L., Spencer, M. G., Terrones, M., Windl, W., & Goldberger, J. E. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898–2926.

    Article  CAS  Google Scholar 

  7. Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 3, 491–495.

    Article  CAS  Google Scholar 

  8. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351–355.

    Article  CAS  Google Scholar 

  9. Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.

    Article  CAS  Google Scholar 

  10. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.

    Article  CAS  Google Scholar 

  11. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320, 1308–1308.

    Article  CAS  Google Scholar 

  12. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.

    Article  CAS  Google Scholar 

  13. Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. (2012). A roadmap for graphene. Nature, 490, 192–200.

    Article  CAS  Google Scholar 

  14. Ferrari, A. C., Bonaccorso, F., Fal’ko, V., Novoselov, K. S., Roche, S., Boggild, P., Borini, S., Koppens, F. H. L., Palermo, V., Pugno, N., Garrido, J. A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhanen, T., Morpurgo, A., Coleman, J. N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G. F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A. N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G. M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B. J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I. A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S. R. T., Tannock, Q., Lofwander, T., & Kinaret, J. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7, 4598–4810.

    Article  CAS  Google Scholar 

  15. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  CAS  Google Scholar 

  16. Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312–1314.

    Article  CAS  Google Scholar 

  17. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V., & Zolotukhin, A. A. (2007). Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45, 2017–2021.

    Article  CAS  Google Scholar 

  18. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Article  CAS  Google Scholar 

  19. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Article  CAS  Google Scholar 

  20. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Article  CAS  Google Scholar 

  21. Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249–259.

    Article  Google Scholar 

  22. Segal, M. (2009). Selling graphene by the ton. Nature Nanotechnology, 4, 611–613.

    Google Scholar 

  23. Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 31, 1481–1487.

    Article  CAS  Google Scholar 

  24. Hofmann, U., & König, E. (1937). Untersuchungen über graphitoxyd. Zeitschrift für Anorganische und Allgemeine Chemie, 234, 311–336.

    Article  CAS  Google Scholar 

  25. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

    Article  CAS  Google Scholar 

  26. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814.

    Article  CAS  Google Scholar 

  27. Zhao, J., Pei, S., Ren, W., Gao, L., & Cheng, H.-M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4, 5245–5252.

    Article  CAS  Google Scholar 

  28. Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564.

    Article  CAS  Google Scholar 

  29. Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101.

    Article  CAS  Google Scholar 

  30. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.

    Article  CAS  Google Scholar 

  31. Wang, X., Zhi, L., & Müllen, K. (2007). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Article  CAS  Google Scholar 

  32. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.

    Article  CAS  Google Scholar 

  33. Hu, K., Kulkarni, D. D., Choi, I., & Tsukruk, V. V. (2014). Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science, 39, 1934–1972.

    Article  CAS  Google Scholar 

  34. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7, 3499–3503.

    Article  CAS  Google Scholar 

  35. Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene for device applications. Nano Letters, 7, 3394–3398.

    Article  CAS  Google Scholar 

  36. Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1, 73.

    Article  CAS  Google Scholar 

  37. Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43, 291–312.

    Article  CAS  Google Scholar 

  38. Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS Nano, 4, 6557–6564.

    Article  CAS  Google Scholar 

  39. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 22, 4467–4472.

    Article  CAS  Google Scholar 

  40. Gómez-Navarro, C., Burghard, M., & Kern, K. (2008). Elastic properties of chemically derived single graphene sheets. Nano Letters, 8, 2045–2049.

    Article  CAS  Google Scholar 

  41. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V., & Geim, A. K. (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335, 442–444.

    Article  CAS  Google Scholar 

  42. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3, 301–306.

    Article  CAS  Google Scholar 

  43. Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5, 5426–5434.

    Article  CAS  Google Scholar 

  44. Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.

    Article  CAS  Google Scholar 

  45. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005.

    Article  CAS  Google Scholar 

  46. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    Article  CAS  Google Scholar 

  47. Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Naslund, L. A., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., & Barsoum, M. W. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374–2381.

    Article  CAS  Google Scholar 

  48. Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78–81.

    Article  CAS  Google Scholar 

  49. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5, 2488–2503.

    Article  CAS  Google Scholar 

  50. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  51. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.

    Article  CAS  Google Scholar 

  52. Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., Yang, J., Gogotsi, Y., Billinge, S. J. L., & Barsoum, M. W. (2014). Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 50, 9517–9520.

    Article  CAS  Google Scholar 

  53. Urbankowski, P., Anasori, B., Hantanasirisakul, K., Yang, L., Zhang, L., Haines, B., May, S. J., Billinge, S. J. L., & Gogotsi, Y. (2017). 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 9, 17722–17730.

    Article  CAS  Google Scholar 

  54. Anasori, B., Shi, C., Moon, E. J., Xie, Y., Voigt, C. A., Kent, P. R. C., May, S. J., Billinge, S. J. L., Barsoum, M. W., & Gogotsi, Y. (2016). Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 1, 227–234.

    Article  CAS  Google Scholar 

  55. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.

    Article  CAS  Google Scholar 

  56. Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 54, 3907–3911.

    Article  CAS  Google Scholar 

  57. Wang, X., Kajiyama, S., Iinuma, H., Hosono, E., Oro, S., Moriguchi, I., Okubo, M., & Yamada, A. (2015). Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 6, 6544.

    Article  CAS  Google Scholar 

  58. Xu, J., Shim, J., Park, J.-H., Lee, S. (2016). MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Advanced Functional Materials, 26, 5328–5334.

    Google Scholar 

  59. Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2, 1600255.

    Article  CAS  Google Scholar 

  60. Miranda, A., Halim, J., Barsoum, M. W., & Lorke, A. (2016). Electronic properties of freestanding Ti3C2Tx MXene monolayers. Applied Physics Letters, 108, 033102.

    Article  CAS  Google Scholar 

  61. Miranda, A., Halim, J., Lorke, A., & Barsoum, M. W. (2017). Rendering Ti3C2Tx (MXene) monolayers visible. Materials Research Letters, 5, 322–328.

    Article  CAS  Google Scholar 

  62. Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., & Sinitskii, A. (2018). Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 4, eaat0491.

    Article  CAS  Google Scholar 

  63. Zhang, C., Anasori, B., Seral-Ascaso, A., Park, C. Y., McEvoy, N., Shmeliov, A., Duesberg, G. S., Coleman, J. N., Gogotsi, Y., & Nicolosi, V. (2017). Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced Materials, 29, 1702678.

    Article  CAS  Google Scholar 

  64. Ying, G., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2017). Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Materials Research Letters, 5, 391–398.

    Article  CAS  Google Scholar 

  65. Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.

    Article  CAS  Google Scholar 

  66. Kim, S. J., Koh, H.-J., Ren, C. E., Kwon, O., Maleski, K., Cho, S.-Y., Anasori, B., Kim, C.-K., Choi, Y.-K., Kim, J., Gogotsi, Y., & Jung, H.-T. (2018). Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano, 12, 986–993.

    Article  CAS  Google Scholar 

  67. Lee, E., VahidMohammadi, A., Prorok, B. C., Yoon, Y. S., Beidaghi, M., & Kim, D.-J. (2017). Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Applied Materials & Interfaces, 9, 37184–37190.

    Article  CAS  Google Scholar 

  68. Zhang, Y.-Z., Lee, K. H., Anjum, D. H., Sougrat, R., Jiang, Q., Kim, H., & Alshareef, H. N. (2018). MXenes stretch hydrogel sensor performance to new limits. Science Advances, 4, eaat0098.

    Article  CAS  Google Scholar 

  69. Lai, S., Jeon, J., Jang, S. K., Xu, J., Choi, Y. J., Park, J.-H., Hwang, E., & Lee, S. (2015). Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale, 7, 19390–19396.

    Article  CAS  Google Scholar 

  70. Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900.

    Article  CAS  Google Scholar 

  71. Ying, G., Kota, S., Dillon, A. D., Fafarman, A. T., & Barsoum, M. W. (2018). Conductive transparent V2CTx (MXene) films. FlatChem, 8, 25–30.

    Article  CAS  Google Scholar 

  72. Halim, J., Kota, S., Lukatskaya Maria, R., Naguib, M., Zhao, M.-Q., Moon Eun, J., Pitock, J., Nanda, J., May Steven, J., Gogotsi, Y., & Barsoum Michel, W. (2016). Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 26, 3118–3127.

    Article  CAS  Google Scholar 

  73. Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., Palisaitis, J., Hultman, L., Barsoum, M. W., Persson, P. O. Å., & Rosen, J. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.

    Article  Google Scholar 

  74. Halim, J., Palisaitis, J., Lu, J., Thörnberg, J., Moon, E. J., Precner, M., Eklund, P., Persson, P. O. Å., Barsoum, M. W., & Rosen, J. (2018). Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Applied Nano Materials, 1, 2455–2460.

    Article  CAS  Google Scholar 

  75. Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., Barsoum, M. W., & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111, 16676.

    Article  CAS  Google Scholar 

  76. Hu, T., Zhang, H., Wang, J., Li, Z., Hu, M., Tan, J., Hou, P., Li, F., & Wang, X. (2015). Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Scientific Reports, 5, 16329.

    Article  CAS  Google Scholar 

  77. Dillon, A. D., Ghidiu, M. J., Krick, A. L., Griggs, J., May Steven, J., Gogotsi, Y., Barsoum Michel, W., & Fafarman Aaron, T. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26, 4162–4168.

    Article  CAS  Google Scholar 

  78. Mariano, M., Mashtalir, O., Antonio, F. Q., Ryu, W.-H., Deng, B., Xia, F., Gogotsi, Y., & Taylor, A. D. (2016). Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 8, 16371–16378.

    Article  CAS  Google Scholar 

  79. Hantanasirisakul, K., Zhao, M.-Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren Chang, E., Barsoum Michel, W., & Gogotsi, Y. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2, 1600050.

    Article  CAS  Google Scholar 

  80. Liu, J., Zhang, H.-B., Sun, R., Liu, Y., Liu, Z., Zhou, A., & Yu, Z.-Z. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29, 1702367.

    Article  CAS  Google Scholar 

  81. Du, F., Tang, H., Pan, L., Zhang, T., Lu, H., Xiong, J., Yang, J., & Zhang, C. (2017). Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochimica Acta, 235, 690–699.

    Article  CAS  Google Scholar 

  82. Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., & Gogotsi, Y. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2, 17105.

    Article  CAS  Google Scholar 

  83. Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., & Gogotsi, Y. (2014). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2, 14334–14338.

    Article  CAS  Google Scholar 

  84. Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M. R., Gogotsi, Y., & Taheri, M. L. (2014). In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. Journal of Materials Chemistry A, 2, 14339–14343.

    Article  CAS  Google Scholar 

  85. Zhang, C. J., Pinilla, S., McEvoy, N., Cullen, C. P., Anasori, B., Long, E., Park, S.-H., Seral-Ascaso, A., Shmeliov, A., Krishnan, D., Morant, C., Liu, X., Duesberg, G. S., Gogotsi, Y., & Nicolosi, V. (2017). Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chemistry of Materials, 29, 4848–4856.

    Article  CAS  Google Scholar 

  86. Lipatov, A., Wymore, B. B., Fursina, A., Vo, T. H., Sinitskii, A., & Redepenning, J. G. (2015). Electropolymerization of poly(phenylene oxide) on graphene as a top-gate dielectric. Chemistry of Materials, 27, 157–165.

    Article  CAS  Google Scholar 

  87. Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., & Chen, L. (2015). Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. Journal of the American Chemical Society, 137, 2715–2721.

    Article  CAS  Google Scholar 

  88. Pierson, H. O. (1993). Graphite structure and properties. In H. O. Pierson (Ed.), Handbook of carbon, graphite, diamonds and fullerenes (pp. 43–69). Oxford: William Andrew Publishing.

    Google Scholar 

  89. Ghidiu, M., Kota, S., Drozd, V., & Barsoum, M. W. (2018). Pressure-induced shear and interlayer expansion in Ti3C2 MXene in the presence of water. Science Advances, 4, eaao6850.

    Article  CAS  Google Scholar 

  90. Sinitskii, A., Fursina, A. A., Kosynkin, D. V., Higginbotham, A. L., Natelson, D., & Tour, J. M. (2009). Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes. Applied Physics Letters, 95, 253108.

    Article  CAS  Google Scholar 

  91. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644.

    Article  CAS  Google Scholar 

  92. Xu, K., Cao, P., & Heath, J. R. (2010). Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 329, 1188–1191.

    Article  CAS  Google Scholar 

  93. Ochedowski, O., Bussmann, B. K., & Schleberger, M. (2014). Graphene on mica – intercalated water trapped for life. Scientific Reports, 4, 6003.

    Article  CAS  Google Scholar 

  94. Coy Diaz, H., Addou, R., & Batzill, M. (2014). Interface properties of CVD grown graphene transferred onto MoS2(0001). Nanoscale, 6, 1071–1078.

    Article  CAS  Google Scholar 

  95. Sinitskii, A., Dimiev, A., Corley, D. A., Fursina, A. A., Kosynkin, D. V., & Tour, J. M. (2010). Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano, 4, 1949–1954.

    Article  CAS  Google Scholar 

  96. Chertopalov, S., & Mochalin, V. N. (2018). Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano, 12, 6109–6116.

    Article  CAS  Google Scholar 

  97. Lipatov, A., Varezhnikov, A., Augustin, M., Bruns, M., Sommer, M., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2014). Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing. Applied Physics Letters, 104, 013114.

    Article  CAS  Google Scholar 

  98. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8, 3137–3140.

    Article  CAS  Google Scholar 

  99. Lu, G., Park, S., Yu, K., Ruoff, R. S., Ocola, L. E., Rosenmann, D., & Chen, J. (2011). Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano, 5, 1154–1164.

    Article  CAS  Google Scholar 

  100. Rumyantsev, S., Liu, G., Shur, M. S., Potyrailo, R. A., & Balandin, A. A. (2012). Selective gas sensing with a single pristine graphene transistor. Nano Letters, 12, 2294–2298.

    Article  CAS  Google Scholar 

  101. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6, 652–655.

    Article  CAS  Google Scholar 

  102. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., Kent, P. R. C., Gogotsi, Y., & Barsoum, M. W. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507–9516.

    Article  CAS  Google Scholar 

  103. Bertolazzi, S., Brivio, J., & Kis, A. (2011). Stretching and breaking of ultrathin MoS2. ACS Nano, 5, 9703–9709.

    Article  CAS  Google Scholar 

  104. Castellanos-Gomez, A., Poot, M., Steele, G. A., van der Zant, H. S., Agrait, N., & Rubio-Bollinger, G. (2012). Elastic properties of freely suspended MoS2 nanosheets. Advanced Materials, 24, 772–775.

    Article  CAS  Google Scholar 

  105. Liu, K., Yan, Q. M., Chen, M., Fan, W., Sun, Y. H., Suh, J., Fu, D. Y., Lee, S., Zhou, J., Tongay, S., Ji, J., Neaton, J. B., & Wu, J. Q. (2014). Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Letters, 14, 5097–5103.

    Article  CAS  Google Scholar 

  106. Falin, A., Cai, Q., Santos, E. J. G., Scullion, D., Qian, D., Zhang, R., Yang, Z., Huang, S., Watanabe, K., Taniguchi, T., Barnett, M. R., Chen, Y., Ruoff, R. S., & Li, L. H. (2017). Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 8, 15815.

    Article  CAS  Google Scholar 

  107. Gogotsi, Y., & Andrievski, R. A. (1999). Materials science of carbides, nitrides and borides. Dordrecht, NL: Kluwer.

    Book  Google Scholar 

  108. Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications, 2, 133–137.

    Article  CAS  Google Scholar 

  109. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin +1Cn (MXenes). Nanotechnology, 26, 265705.

    Article  CAS  Google Scholar 

  110. Xian-Hu, Z., Kan, L., Qiuwu, L., Qing, H., Jian, H., Xiaodong, W., & Shiyu, D. (2015). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL (Europhysics Letters), 111, 26007.

    Article  CAS  Google Scholar 

  111. Zha, X.-H., Yin, J., Zhou, Y., Huang, Q., Luo, K., Lang, J., Francisco, J. S., He, J., & Du, S. (2016). Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. Journal of Physical Chemistry C, 120, 15082–15088.

    Article  CAS  Google Scholar 

  112. Feng, L., Zha, X.-H., Luo, K., Huang, Q., He, J., Liu, Y., Deng, W., & Du, S. (2017). Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 46, 2460–2466.

    Article  CAS  Google Scholar 

  113. Barsoum, M. W. (2006). Nanolayered of kinking linear elastic solids. In Y. Gogotsi (Ed.), Nanomaterials handbook (pp. 385–403). Boca Raton, FL: CRC Press.

    Google Scholar 

  114. Cameron, J. S., Ashley, D. S., Andrew, J. S., Joseph, G. S., & Christopher, T. G. (2016). Accurate thickness measurement of graphene. Nanotechnology, 27, 125704.

    Article  CAS  Google Scholar 

  115. Fu, Z. H., Zhang, Q. F., Legut, D., Si, C., Germann, T. C., Lookman, T., Du, S. Y., Francisco, J. S., & Zhang, R. F. (2016). Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 94, 104103.

    Article  CAS  Google Scholar 

  116. Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X.-L., Cheng, H.-M., & Ren, W. (2015). Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 14, 1135–1141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sinitskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lipatov, A., Sinitskii, A. (2019). Electronic and Mechanical Properties of MXenes Derived from Single-Flake Measurements. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_16

Download citation

Publish with us

Policies and ethics