Skip to main content

Predicted Magnetic Properties of MXenes

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

Recent success in observing long-range magnetic ordering in two-dimensional (2D) materials has fueled interest in identifying promising material platforms for fundamental investigations of magnetic phases and development of nanoscale magnetic devices. Here, we review theoretical progress on understanding and predicting magnetic properties of MXenes. Predictions of intrinsic ground state ferromagnetic and antiferromagnetic ordering, high predicted Curie temperatures, strong magnetic anisotropy, and robustness to oxygen and moisture suggest that MXenes are an ideal family of 2D materials for spintronics and quantum information applications. Moreover, magnetic MXenes are predicted to exhibit semi-metallic, semi-conducting, metallic, and half-metallic transport properties. The magnetic and transport properties are tunable via applied strain, doping, and defect engineering. Exciting challenges and opportunities remain in investigating heterostructures of magnetic MXenes and other 2D materials to realize novel device architectures and magnetic control of quantum phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf, S. A., et al. (2001). Spintronics: A spin-based electronics vision for the future. Science, 294, 1488–1495.

    Article  CAS  Google Scholar 

  2. Sakai, S., et al. (2016). Proximity-induced spin polarization of graphene in contact with half-metallic manganite. ACS Nano, 10, 7532–7541.

    Article  CAS  Google Scholar 

  3. Adachi, H. (2015). Back to basics. Nature Physics, 11, 707–708.

    Article  CAS  Google Scholar 

  4. Mermin, N. D., & Wagner, H. (1966). Absence off ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17, 1133–1136.

    Article  CAS  Google Scholar 

  5. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  6. Stoner, E. C. (1938). Collective electron ferromagnetism. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 165, 372–414.

    Article  Google Scholar 

  7. Dong, L., Kumar, H., Anasori, B., Gogotsi, Y., & Shenoy, V. B. (2017). Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transition-metal MXenes. Journal of Physical Chemistry Letters, 8, 422–428.

    Article  CAS  Google Scholar 

  8. Kumar, H., et al. (2017). Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 11, 7648–7655.

    Article  CAS  Google Scholar 

  9. Nair, R. R., et al. (2012). Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 8, 199–202.

    Article  CAS  Google Scholar 

  10. Tongay, S., Varnoosfaderani, S. S., Appleton, B. R., Wu, J., & Hebard, A. F. (2012). Magnetic properties of MoS2: Existence of ferromagnetism. Applied Physics Letters, 101, 123105.

    Article  Google Scholar 

  11. Khazaei, M., et al. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23, 2185–2192.

    Article  CAS  Google Scholar 

  12. Gao, G., et al. (2016). Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 8, 8986–8994.

    Article  CAS  Google Scholar 

  13. Wang, G. Theoretical prediction of the intrinsic half-metallicity in surface- oxygen-passivated Cr2N MXene. 120, 18850–18857.

    Google Scholar 

  14. Yang, J., Zhou, X., Luo, X., Zhang, S., & Chen, L. (2016). Tunable electronic and magnetic properties of Cr2M′C2T2 (M′ = Ti or V; T = O, OH or F). Applied Physics Letters, 109, 203109.

    Article  Google Scholar 

  15. Zhang, Z., Zou, X., Crespi, V. H., & Yakobson, B. I. (2013). Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. 7, 10475–10481.

    Google Scholar 

  16. Si, C., Zhou, J., & Sun, Z. (2015). Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Applied Materials & Interfaces, 7, 17510–17515.

    Article  CAS  Google Scholar 

  17. Jungwirth, T., Marti, X., Wadley, P., & Wunderlich, J. (2016). Antiferromagnetic spintronics. Nature Nanotechnology, 11, 231–241.

    Article  CAS  Google Scholar 

  18. Šmejkal, L., Mokrousov, Y., Yan, B., & MacDonald, A. H. (2018). Topological antiferromagnetic spintronics. Nature Physics, 14, 242–251.

    Article  Google Scholar 

  19. Hu, J., Xu, B., Ouyang, C., Yang, S. A., & Yao, Y. (2014). Investigations on V2C and V2CX2(X = F, OH) monolayer as a promising anode material for Li Ion batteries from first-principles calculations. Journal of Physical Chemistry C, 118, 24274–24281.

    Article  CAS  Google Scholar 

  20. He, J., Lyu, P., Sun, L. Z., Morales García, Á., & Nachtigall, P. (2016). High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 4, 6500–6509.

    Article  CAS  Google Scholar 

  21. He, J., et al. (2019). Cr2TiC2 -based double MXenes: Novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics. Nanoscale, 11, 356–364.

    Article  CAS  Google Scholar 

  22. Zheng, J., et al. (2019). Half-metal state of Ti2C monolayer by asymmetric surface decoration. Physical Chemistry Chemical Physics, 21, 3318–3326.

    Article  CAS  Google Scholar 

  23. Frey, N. C., et al. (2019). Surface engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano, 13, 2831–2839.

    Article  CAS  Google Scholar 

  24. Torelli, D., & Olsen, T. (2018). Calculating critical temperatures for ferromagnetic order in two-dimensional materials. 2D Materials, 6(1).

    Google Scholar 

  25. Torelli, D., Thygesen, K. S., & Olsen, T. (2019). High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Materials.

    Google Scholar 

  26. Frey, N. C., Kumar, H., Anasori, B., Gogotsi, Y., & Shenoy, V. B. (2018). Tuning noncollinear spin structure and anisotropy in ferromagnetic nitride MXenes. ACS Nano, 12, 6319–6325.

    Article  CAS  Google Scholar 

  27. Zhao, S., Kang, W., & Xue, J. (2014). Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Applied Physics Letters, 104(13), 133106.

    Article  Google Scholar 

  28. Guo, Z., Zhou, J., Si, C., & Sun, Z. (2015). Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 17, 15348–15354.

    Article  CAS  Google Scholar 

  29. Balcı, E., Akkuş, Ü. Ö., & Berber, S. (2017). Band gap modification in doped MXene: Sc2CF2. Journal of Materials Chemistry C, 5, 5956–5961.

    Article  Google Scholar 

  30. Yang, J., Luo, X., Zhang, S., & Chen, L. (2016). Investigation of magnetic and electronic properties of transition metal doped Sc2CT2 (T = O, OH or F) using a first principles study. Physical Chemistry Chemical Physics, 18, 12914–12919.

    Article  CAS  Google Scholar 

  31. Sang, X., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 10, 9193–9200.

    CAS  Google Scholar 

  32. Bandyopadhyay, A., Ghosh, D., & Pati, S. K. (2018). Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Physical Chemistry Chemical Physics, 20, 4012–4019.

    Article  CAS  Google Scholar 

  33. Hu, T., Yang, J., & Wang, X. (2017). Carbon vacancy in Ti2CT2 MXenes: Defects or a new opportunity? Physical Chemistry Chemical Physics, 19, 31773–31780.

    Article  CAS  Google Scholar 

  34. Hoffmann, A. (2013). Spin hall effects in metals. IEEE Transactions on Magnetics, 49, 5172–5193.

    Article  CAS  Google Scholar 

  35. Götte, M., Joppe, M., & Dahm, T. (2016). Pure spin current devices based on ferromagnetic topological insulators. Scientific Reports, 6, 36070.

    Article  Google Scholar 

  36. Tsymbal, E. Y., & Pettifor, D. G. (2001). Perspectives of giant magnetoresistance. Solid State Physics, 56, 113–237.

    Article  CAS  Google Scholar 

  37. Persson, I., & Näslund, L.-Å. (2017). On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials, 5, 015002.

    Article  Google Scholar 

  38. Lahtinen, V. T., & Pachos, J. K. (2017). A short introduction to topological quantum computation. SciPost Physics, 3(3), 021.

    Article  Google Scholar 

  39. Moore, J. E. (2010). The birth of topological insulators. Nature, 464, 194–198.

    Article  CAS  Google Scholar 

  40. Yoon, Y., et al. (2018). Low temperature solution synthesis of reduced two dimensional Ti3C2 MXene with paramagnetic behaviour. Nanoscale, 8, 1–3.

    Google Scholar 

  41. Urbankowski, P., et al. (2016). Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8, 11385–11391.

    Article  CAS  Google Scholar 

  42. Xiao, X., et al. (2017). Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano, 11, 2180–2186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek B. Shenoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, N.C., Price, C.C., Bandyopadhyay, A., Kumar, H., Shenoy, V.B. (2019). Predicted Magnetic Properties of MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_15

Download citation

Publish with us

Policies and ethics