Skip to main content

MXene–Organic Hybrid Materials

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

Organic–inorganic hybrid materials are important class of materials which find applications in electrochemical energy conversion and storage, electronics, optics, biomedical applications, and many other areas of our daily life. Material properties of hybrid nanomaterials can be improved by changing either organic or inorganic component in a given hybrid matrix resulting in nearly unlimited combinations of innovative materials. MXenes are 2D inorganic sheets which are known for their metallic conductivity, high mechanical strength, hydrophilicity, and structural diversity. These properties are much needed in an inorganic component of a hybrid material. While the potential of MXenes in their pristine form is well documented, their applications in manufacturing organic–inorganic hybrid nanomaterials are relatively less explored. In this chapter, we have reported recent advances in MXene–organic hybrid materials. We summarized various MXene–organic hybrid synthesis approaches such as oxidant-free polymerization, self-assembly, diazonium chemistry, and others. With the help of computational methods, we have explained the host–guest interaction mechanisms, charge transfer mechanisms, and propagation of monomers into polymers. The role of polarity in organic molecules/polymers is discussed which may guide the design of new MXene–organic hybrid materials with well-defined properties for a variety of applications. We have also summarized the properties and various applications of MXene–organic hybrids. This chapter concludes with the remaining challenges and outlook to our readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonaccorso, F., et al. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347, 1246501-1–1246501-9.

    Article  CAS  Google Scholar 

  2. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  CAS  Google Scholar 

  3. Pomerantseva, E., & Gogotsi, Y. (2017). Two-dimensional heterostructures for energy storage. Nature Energy, 2(1–6).

    Google Scholar 

  4. Zhang, X., Lai, Z., Ma, Q., & Zhang, H. (2018). Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 47, 3301–3338.

    Article  CAS  Google Scholar 

  5. Novoselov, K. S., Mishchenko, A., Carvalho, A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353, aac9439.

    Article  CAS  Google Scholar 

  6. Huang, Y. L., et al. (2018). The organic-2D transition metal dichalcogenide heterointerface. Chemical Society Reviews, 47, 3241–3264.

    Article  CAS  Google Scholar 

  7. Burkhardt, S. E., et al. (2012). Tailored redox functionality of small organics for pseudocapacitive electrodes. Energy & Environmental Science, 5, 7176.

    Article  CAS  Google Scholar 

  8. Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: Materials for batteries, biosensors and more. Polymer Chemistry, 4, 2206–2214.

    Article  CAS  Google Scholar 

  9. Schon, T. B., McAllister, B. T., Li, P.-F., & Seferos, D. S. (2016). The rise of organic electrode materials for energy storage. Chemical Society Reviews, 45, 6345–6404.

    Article  CAS  Google Scholar 

  10. Casado, N., Hernández, G., Sardon, H., & Mecerreyes, D. (2016). Current trends in redox polymers for energy and medicine. Progress in Polymer Science, 52, 107–135.

    Article  CAS  Google Scholar 

  11. Boota, M., Hatzell, K. B., Kumbur, E. C., & Gogotsi, Y. (2015). Towards high energy density pseudocapacitive flowable electrodes via incorporation of hydroquinone. ChemSusChem, 8, 835–843.

    Article  CAS  Google Scholar 

  12. Boota, M., Chen, C., Bécuwe, M., Miao, L., & Gogotsi, Y. (2016). Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy & Environmental Science, 9, 2586–2594.

    Article  CAS  Google Scholar 

  13. Yang, Y., Gupta, M. C., Dudley, K. L., & Lawrence, R. W. (2005). Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Letters, 5, 2131–2134.

    Article  CAS  Google Scholar 

  14. Chujo, Y. (1996). Organic—Inorganic hybrid materials. Current Opinion in Solid State & Materials Science, 1, 806–811.

    Article  CAS  Google Scholar 

  15. Wang, H., & Dai, H. (2013). Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 42, 3088–3113.

    Article  CAS  Google Scholar 

  16. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  17. Tan, T. L., Jin, H. M., Sullivan, M. B., Anasori, B., & Gogotsi, Y. (2017). High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS Nano, 11, 4407–4418.

    Article  CAS  Google Scholar 

  18. Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    Article  CAS  Google Scholar 

  19. Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.

    Article  CAS  Google Scholar 

  20. Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.

    Article  CAS  Google Scholar 

  21. Alhabeb, M., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644.

    Article  CAS  Google Scholar 

  22. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005.

    Article  CAS  Google Scholar 

  23. Boota, M., et al. (2015). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28, 1517–1522.

    Article  CAS  Google Scholar 

  24. Ling, Z., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111, 16676–16681.

    Article  CAS  Google Scholar 

  25. Chen, C., et al. (2018). Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. Journal of Materials Chemistry A, 6, 4617–4622.

    Article  CAS  Google Scholar 

  26. Hu, L., Ren, Y., Yang, H., & Xu, Q. (2014). Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Applied Materials & Interfaces, 6, 14644–14652.

    Article  CAS  Google Scholar 

  27. Biswas, S., & Drzal, L. T. (2010). Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 22, 5667–5671.

    Article  CAS  Google Scholar 

  28. Huang, J., & Kaner, R. B. (2004). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821.

    Article  CAS  Google Scholar 

  29. Dan, L. I., Huang, J., & Kaner, R. B. (2009). Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Accounts of Chemical Research, 42, 135–145.

    Article  CAS  Google Scholar 

  30. Sajedi-Moghaddam, A., Saievar-Iranizad, E., & Pumera, M. (2017). Two-dimensional transition metal dichalcogenide/conducting polymer composites: Synthesis and applications. Nanoscale, 9, 8052–8065.

    Article  CAS  Google Scholar 

  31. Chen, C., et al. (2017). Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. Journal of Materials Chemistry A, 5, 5260–5265.

    Article  CAS  Google Scholar 

  32. Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29, 283–293.

    Article  Google Scholar 

  33. Jones, R., Bean, A., & Gerritt, P. (2013). The chemistry of pyrroles: Organic chemistry: A series of monographs. New York: Academic Press.

    Google Scholar 

  34. Yuan, X., Zeng, X., Zhang, H., Ma, Z., & Wang, C. (2010). Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped co-PPy/C as cathode electrocatalyst. Journal of the American Chemical Society, 132, 1754–1755.

    Article  CAS  Google Scholar 

  35. Gupta, S. (2008). Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: Structural and physical property characterization. Journal of Raman Specroscopy, 39, 1343–1355.

    Article  CAS  Google Scholar 

  36. Zang, J., et al. (2008). Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules, 41, 7053–7057.

    Article  CAS  Google Scholar 

  37. Hoogboom, J., & Swager, T. M. (2006). Increased alignment of electronic polymers in liquid crystals via hydrogen bonding extension. Journal of the American Chemical Society, 128, 15058–15059.

    Article  CAS  Google Scholar 

  38. Yan, J., et al. (2014). Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano, 8, 4720–4729.

    Article  CAS  Google Scholar 

  39. Lukatskaya, M. R., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502–1505.

    Article  CAS  Google Scholar 

  40. Kalambate, P. K., Dar, R. A., Karna, S. P., & Srivastava, A. K. (2015). High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. Journal of Power Sources, 276, 262–270.

    Article  CAS  Google Scholar 

  41. Wallace, G. G., Teasdale, P. R., Spinks, G. M., Leon, P. A., & Kane-Maguir. (2008). Conductive electroactive polymers: Intelligent polymer systems. Boca Raton: Taylor & Francis, CRC Press.

    Google Scholar 

  42. Boota, M., et al. (2015). Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life. ChemSusChem, 8, 3576–3581.

    Article  CAS  Google Scholar 

  43. Kang, E. T., Neoh, K. G., & Ti, H. C. (1986). Electrical properties of chemically synthesized polypyrrole-halogen charge transfer complexes. Solid State Communications, 60, 457–459.

    Article  CAS  Google Scholar 

  44. Kang, E. T., Ti, H. C., Neoh, K. G., & Tan, T. C. (1988). ESCA analysis of polymer–acceptor interactions in chemically synthesized polypyrrole–halogen complexes. Polymer Journal, 20, 399–406.

    Article  CAS  Google Scholar 

  45. Hawkins, S. J., & Ratcliffe, N. M. (2000). A study of the effects of acid on the polymerisation of pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole. Journal of Materials Chemistry, 10, 2057–2062.

    Article  CAS  Google Scholar 

  46. Neoh, K. G., Tan, T. C., Kang, E. T., & Ridge, K. (1988). Chemical synthesis and characterization of polypyrrolc chlorine complex. Polymer (Guildf)., 29, 553–558.

    Article  CAS  Google Scholar 

  47. Camurlu, P. (2014). Polypyrrole derivatives for electrochromic applications. RSC Advances, 4, 55832–55845.

    Article  CAS  Google Scholar 

  48. Roncali, J., Blanchard, P., & Frere, P. (2005). 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional pi-conjugated systems. Journal of Materials Chemistry, 15, 1589–1610.

    Article  CAS  Google Scholar 

  49. Chiu, W. W., Travaš-Sejdić, J., Cooney, R. P., & Bowmaker, G. A. (2006). Studies of dopant effects in poly(3,4-ethylenedi-oxythiophene) using Raman spectroscopy. Journal of Raman Specroscopy, 37, 1354–1361.

    Article  CAS  Google Scholar 

  50. Subramanian, P., Clark, N., Winther-Jensen, B., MacFarlane, D., & Spiccia, L. (2009). Vapour-phase polymerization of pyrrole and 3,4-ethylenedioxythiophene using iron(III) 2,4,6-trimethylbenzenesulfonate. Australian Journal of Chemistry, 62, 133–139.

    Article  CAS  Google Scholar 

  51. Garreau, S., Louarn, G., Buisson, J. P., Froyer, G., & Lefrant, S. (1999). In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 32, 6807–6812.

    Article  CAS  Google Scholar 

  52. Feng, Z.-Q., et al. (2013). Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer (Guildf)., 54, 702–708.

    Article  CAS  Google Scholar 

  53. Gustafsson, H., Kvarnström, C., & Ivaska, A. (2008). Comparative study of n-doping and p-doping of poly(3,4-ethylenedioxythiophene) electrosynthesised on aluminium. Thin Solid Films, 517, 474–478.

    Article  CAS  Google Scholar 

  54. Xu, Y., et al. (2009). A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research, 2, 343–348.

    Article  CAS  Google Scholar 

  55. D’Arcy, J. M., et al. (2014). Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano, 8, 1500–1510.

    Article  CAS  Google Scholar 

  56. Cho, W., et al. (2015). Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels. Physical Chemistry Chemical Physics, 17, 5115–5123.

    Article  CAS  Google Scholar 

  57. Bader, R. F. W. (1990). Atoms in molecules: A quantum theoryNo title. Oxford: Oxford University Press.

    Google Scholar 

  58. Chen, Z., et al. (2018). Preparation and electrochemical performances of doped MXene/poly(3,4-ethylenedioxythiophene) composites. Materials Letters, 220, 305–308.

    Article  CAS  Google Scholar 

  59. Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.

    Article  CAS  Google Scholar 

  60. Ren, Y., et al. (2018). Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Materials Letters, 214, 84–87.

    Article  CAS  Google Scholar 

  61. Tong, Y., et al. (2018). Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 434, 283–293.

    Article  CAS  Google Scholar 

  62. Marco, G., Emanuele, O., & Paolo, S. (2018). When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic van der Waals Heterostructures. Advanced Materials, 30, 1706103.

    Article  CAS  Google Scholar 

  63. Hunter, C. A., & Sanders, J. K. M. (1990). The nature of pi-pi interactions. Journal of the American Chemical Society, 112, 5525–5534.

    Article  CAS  Google Scholar 

  64. Ciesielski, A., & Samorì, P. (2014). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 43, 381–398.

    Article  CAS  Google Scholar 

  65. An, H., et al. (2018). Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 4, eaaq0118.

    Article  CAS  Google Scholar 

  66. Zhou, Z., et al. (2018). Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale, 10, 6005–6013.

    Article  CAS  Google Scholar 

  67. Naguib, M., et al. (2016). Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Advances, 6, 72069–72073.

    Article  CAS  Google Scholar 

  68. A., M. E, et al. (2017). Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. Journal of Applied Polymer Science, 134, 45295.

    Article  CAS  Google Scholar 

  69. Boota, M., et al. (2017). Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): Intercalation and pseudocapacitance. Chemistry of Materials, 29, 2731–2738.

    Article  CAS  Google Scholar 

  70. Katti, K. S., Sikdar, D., Katti, D. R., Ghosh, P., & Verma, D. (2006). Molecular interactions in intercalated organically modified clay and clay – Polycaprolactam nanocomposites : Experiments and modeling. Polymer (Guildf)., 47, 403–414.

    Article  CAS  Google Scholar 

  71. Wu, Q., Xue, Z., Qi, Z., & Wang, F. (2000). Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer (Guildf)., 41, 2029–2032.

    Article  CAS  Google Scholar 

  72. Billingham, J., Breen, C., & Yarwood, J. (1997). Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite : An in situ study using ATR-FTIR. Vibrational Spectroscopy, 14, 19–34.

    Article  CAS  Google Scholar 

  73. Wang, H., et al. (2016). Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 384, 287–293.

    Article  CAS  Google Scholar 

  74. Wang, H., Zhang, J., Wu, Y., Huang, H., & Jiang, Q. (2018). Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. Journal of Physics and Chemistry of Solids, 115, 172–179.

    Article  CAS  Google Scholar 

  75. Zhang, H., et al. (2016). Preparation, mechanical and anti-friction performance of MXene/polymer composites. Materials and Design, 92, 682–689.

    Article  CAS  Google Scholar 

  76. Cao, Y., et al. (2017). Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 7, 20494–20501.

    Article  CAS  Google Scholar 

  77. Huang, Z., et al. (2016). Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer (Guildf)., 102, 119–126.

    Article  CAS  Google Scholar 

  78. Liu, R., & Li, W. (2018). High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega, 3, 2609–2617.

    Article  CAS  Google Scholar 

  79. Cao, X., Wu, M., Zhou, A., Wang, Y., He, X., & Wang, L. (2017). Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites. e-Polymers, 17, 373.

    Article  CAS  Google Scholar 

  80. Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 7, 56204–56210.

    Article  CAS  Google Scholar 

  81. Wu, X., et al. (2016). Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 515, 175–188.

    Article  CAS  Google Scholar 

  82. Hao, L., et al. (2017). Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 100, 139–149.

    Article  CAS  Google Scholar 

  83. Xu, Z., Liu, G., Ye, H., Jin, W., & Cui, Z. (2018). Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 563, 625. https://doi.org/10.1016/j.memsci.2018.05.044.

    Article  CAS  Google Scholar 

  84. Zhang, J., et al. (2017). Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ionics, 310, 100–111.

    Article  CAS  Google Scholar 

  85. Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.

    Article  CAS  Google Scholar 

  86. Renhui, S., et al. (2017). Highly conductive transition metal carbide/Carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27, 1702807.

    Article  CAS  Google Scholar 

  87. Tang, H., et al. (2015). Growth of Polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Advanced Materials, 27, 1117–1123.

    Article  CAS  Google Scholar 

  88. Minshen, Z., et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6, 1600969.

    Article  CAS  Google Scholar 

  89. Leiqiang, Q., et al. (2017). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Advanced Functional Materials, 28, 1703808.

    Google Scholar 

  90. Zhao, L., et al. (2017). Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 11, 5800–5807.

    Article  CAS  Google Scholar 

  91. Liu, G., et al. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9, 40077–40086.

    Article  CAS  Google Scholar 

  92. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.

    Article  CAS  Google Scholar 

  93. Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139, 16235–16247.

    Article  CAS  Google Scholar 

  94. Chen, J., et al. (2015). CO2 and temperature dual responsive “smart” MXene phases. Chemical Communications, 51, 314–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boota, M. (2019). MXene–Organic Hybrid Materials. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_13

Download citation

Publish with us

Policies and ethics