Skip to main content

Chemical and Electrochemical Intercalation of Ions and Molecules into MXenes

  • Chapter
  • First Online:

Abstract

MXenes have hydrophilic interlayer spaces that can accommodate a large variety of intercalants. These are typically molecules such as H2O or dimethylsulfoxide (DMSO) or ions such as metal or ammonium cations. This chapter summarizes the body of literature that has explored exactly what compositions of intercalants have been studied, the nature and extent of the intercalation process, and the effects on structure of the MXenes and resulting changes to properties. This is of special interest due to MXene’s use in applications and devices involving electrochemical ion intercalation.Alkali, alkaline earth, transition metal, and alkylammonium (AA) cations are reviewed in-depth. The first three groups lead to co-intercalation with H2O molecules dependent upon environmental relative humidity, leading to reversible expansion of the basal spacing. The latter leads to a wide range of changes in basal spacing as a function of the structure and packing of the alkylammonium cations. Both chemical and electrochemical intercalation is discussed, and the material property changes that result are highlighted, ranging from electrical conductivity to mechanical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.

    Article  CAS  Google Scholar 

  2. de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42(1–2), 8–24.

    Article  Google Scholar 

  3. Izawa, H., Kikkawa, S., & Koizumi, M. (1982). Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. The Journal of Physical Chemistry, 86(25), 5023–5026.

    Article  CAS  Google Scholar 

  4. Forsman, W. C., Dziemianowicz, T., Leong, K., & Carl, D. (1983). Graphite intercalation chemistry: An interpretive review. Synthetic Metals, 5(2), 77–100.

    Article  CAS  Google Scholar 

  5. Lerf, A., Buchsteiner, A., Pieper, J., Schöttl, S., Dekany, I., Szabo, T., & Boehm, H. P. (2006). Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids, 67(5–6), 1106–1110.

    Article  CAS  Google Scholar 

  6. Schöllhorn, R., & Weiss, A. (1974). Cation exchange reactions and layer solvate complexes of termary phases MxMoS2. Journal of the Less Common Metals, 36, 229–236.

    Article  Google Scholar 

  7. Khan, A. I., & O’Hare, D. (2002). Intercalation chemistry of layered double hydroxides: Recent developments and applications. Journal of Materials Chemistry, 12(11), 3191–3198.

    Article  CAS  Google Scholar 

  8. Hou, X., Bish, D. L., Wang, S.-L., Johnston, C. T., & Kirkpatrick, R. J. (2003). Hydration, expansion, structure, and dynamics of layered double hydroxides. American Mineralogist, 88(1), 167–179.

    Article  CAS  Google Scholar 

  9. Maleski, K., Mochalin, V. N., & Gogotsi, Y. (2017). Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chemistry of Materials, 29(4), 1632–1640.

    Article  CAS  Google Scholar 

  10. Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., Naguib, M., Simon, P., Barsoum, M. W., & Gogotsi, Y. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.

    Article  CAS  Google Scholar 

  11. Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., Barsoum, M. W., & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681.

    Article  CAS  Google Scholar 

  12. Naguib, M., Unocic, R. R., Armstrong, B. L., & Nanda, J. (2015). Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Transactions, 44, 9353–9358.

    Article  CAS  Google Scholar 

  13. Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., & Peng, X. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 7(3), 1795–1803.

    Article  CAS  Google Scholar 

  14. Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., et al. (2014). Transparent conductive two-dimensional titanium arbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.

    Article  CAS  Google Scholar 

  15. Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., & Barsoum, M. W. (2016). Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chemistry of Materials, 28(10), 3507–3514.

    Article  CAS  Google Scholar 

  16. Ghidiu, M. (2018). Ions in MXene: Characterization and control of interlayer cations and their effects on structure and properties of 2D transition metal carbides. PhD Thesis.

    Google Scholar 

  17. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P.-L., Simon, P., Barsoum, M. W., & Gogotsi, Y. (2012). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 16(1), 61–64.

    Article  CAS  Google Scholar 

  18. Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., Aurbach, D., Barsoum, M. W., & Gogotsi, Y. (2014). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Advanced Energy Materials, 5(1), 1400815.

    Article  Google Scholar 

  19. Ghidiu, M., Kota, S., Halim, J., Sherwood, A. W., Nedfors, N., Rosen, J., Mochalin, V. N., & Barsoum, M. W. (2017). Alkylammonium cation intercalation into Ti3C2 (MXene): Effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 29(3), 1099–1106.

    Article  CAS  Google Scholar 

  20. Luo, J., Tao, X., Zhang, J., Xia, Y., Huang, H., Zhang, L., Gan, Y., Liang, C., & Zhang, W. (2016). Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10(2), 2491–2499.

    Article  CAS  Google Scholar 

  21. Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations1. Soil Science Society of America Journal, 50(3), 605–608.

    Article  Google Scholar 

  22. Muckley, E. S., Naguib, M., Wang, H.-W., Vlcek, L., Osti, N. C., Sacci, R. L., Sang, X., Unocic, R. R., Xie, Y., Tyagi, M., et al. (2017). Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano, 11(11), 11118–11126.

    CAS  Google Scholar 

  23. Er, D., Li, J., Naguib, M., Gogotsi, Y., & Shenoy, V. B. (2014). Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Applied Materials & Interfaces, 6(14), 11173–11179.

    Article  CAS  Google Scholar 

  24. Xie, Y., Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., Yu, X., Nam, K.-W., Yang, X.-Q., Kolesnikov, A. I., & Kent, P. R. C. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.

    Article  CAS  Google Scholar 

  25. Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  Google Scholar 

  26. Mashtalir, O., Lukatskaya, M. R., Kolesnikov, A. I., Raymundo-Piñero, E., Naguib, M., Barsoum, M. W., & Gogotsi, Y. (2016). The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 8(17), 9128–9133.

    Article  CAS  Google Scholar 

  27. Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., Gibson, J. K., & Shi, W. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084–12087.

    Article  CAS  Google Scholar 

  28. Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., & Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2T x MXene membranes. Journal of Physical Chemistry Letters, 6(20), 4026–4031.

    Article  CAS  Google Scholar 

  29. Come, J., Black, J. M., Lukatskaya, M. R., Naguib, M., Beidaghi, M., Rondinone, A. J., Kalinin, S. V., Wesolowski, D. J., Gogotsi, Y., & Balke, N. (2015). Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 17, 27–35.

    Article  CAS  Google Scholar 

  30. Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T=F, O and OH) MXene. Applied Surface Science, 416, 725–730.

    Article  CAS  Google Scholar 

  31. Lagaly, G. t., & Weiss, A. (1971). Anordnung Und Orientierung Kationischer Tenside Auf Silicatoberflächen. Kolloid-Zeitschrift und Zeitschrift für Polymere, 243(1), 48–55.

    Article  CAS  Google Scholar 

  32. Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43–51.

    Article  CAS  Google Scholar 

  33. Zhu, J., He, H., Guo, J., Yang, D., & Xie, X. (2003). Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chinese Science Bulletin, 48(4), 368–372.

    CAS  Google Scholar 

  34. Fujita, T., Iyi, N., & Klapyta, Z. (1998). Preparation of azobenzene-mica complex and its photoresponse to ultraviolet irradiation. Materials Research Bulletin, 33(11), 1693–1701.

    Article  CAS  Google Scholar 

  35. Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., & Chen, L. (2015). Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. Journal of the American Chemical Society, 137(7), 2715–2721.

    Article  CAS  Google Scholar 

  36. Gao, Q., Come, J., Naguib, M., Jesse, S., Gogotsi, Y., & Balke, N. (2017). Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene. Faraday Discussions, 199, 393–403.

    Article  CAS  Google Scholar 

  37. Berdiyorov, G. R., Madjet, M. E., & Mahmoud, K. A. (2016). Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Applied Physics Letters, 108(11), 113110.

    Article  Google Scholar 

  38. Osti, N. C., Naguib, M., Ganeshan, K., Shin, Y. K., Ostadhossein, A., van Duin, A. C. T., Cheng, Y., Daemen, L. L., Gogotsi, Y., Mamontov, E., et al. (2017). Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 1(6), 065406.

    Article  Google Scholar 

  39. Römer, F. M., Wiedwald, U., Strusch, T., Halim, J., Mayerberger, E., Barsoum, M. W., & Farle, M. (2017). Controlling the conductivity of Ti3C2 MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity. RSC Advances, 7(22), 13097–13103.

    Article  Google Scholar 

  40. Hu, M., Li, Z., Hu, T., Zhu, S., Zhang, C., & Wang, X. (2016). High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano, 10(12), 11344–11350.

    Article  CAS  Google Scholar 

  41. Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5(15), 1500589.

    Article  Google Scholar 

  42. Overbury, S. H., Kolesnikov, A. I., Brown, G. M., Zhang, Z., Nair, G. S., Sacci, R. L., Lotfi, R., Van Duin, A. C. T., & Naguib, M. (2018). Complexity of intercalation in MXenes: Destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 140(32), 10305–10314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Naguib or Michel W. Barsoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghidiu, M., Naguib, M., Barsoum, M.W. (2019). Chemical and Electrochemical Intercalation of Ions and Molecules into MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_10

Download citation

Publish with us

Policies and ethics