Skip to main content

Intraoperative Neurophysiology Monitoring

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

Intraoperative neurophysiology monitoring (IONM) provides valuable adjunctive information to the surgical team, enhancing their understanding of the patient’s anatomy with the goal of improving patient outcomes and reducing complications. This chapter discusses the roles of specific IONM modalities in minimally invasive spine surgery. The role of IONM in the placement of percutaneous pedicle screws and the far lateral approach to the lumbar spine are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McAfee PC, Phillips FM, Andersson G, Buvenenadran A, Kim CW, Lauryssen C, et al. Minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35(26 Suppl):S271–3.

    Article  Google Scholar 

  2. Galloway GM. Intraoperative neurophysiologic monitoring. Cambridge, New York: Cambridge University Press; 2010. x, 241 pp.

    Book  Google Scholar 

  3. Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35(26 Suppl):S368–74.

    Article  Google Scholar 

  4. Owen JH, Padberg AM, Spahr-Holland L, Bridwell KH, Keppler L, Steffee AD. Clinical correlation between degenerative spine disease and dermatomal somatosensory-evoked potentials in humans. Spine (Phila Pa 1976). 1991;16(6 Suppl):S201–5.

    Article  CAS  Google Scholar 

  5. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4):E6.

    Article  PubMed  Google Scholar 

  6. Sutter M, Eggspuehler A, Muller A, Dvorak J. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases. Eur Spine J. 2007;16(Suppl 2):S153–61.

    Article  PubMed  Google Scholar 

  7. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9.

    Article  PubMed  Google Scholar 

  8. Calancie B, Molano MR. Alarm criteria for motor-evoked potentials: what’s wrong with the “presence-or-absence” approach? Spine (Phila Pa 1976). 2008;33(4):406–14.

    Article  Google Scholar 

  9. Lyon R, Lieberman JA, Feiner J, Burch S. Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model. Spine (Phila Pa 1976). 2009;34(16):E558–64.

    Article  Google Scholar 

  10. Costa P, Bruno A, Bonzanino M, Massaro F, Caruso L, Vincenzo I, et al. Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord. 2007;45(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  11. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG. Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976). 2004;29(6):677–84.

    Article  Google Scholar 

  12. Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine (Phila Pa 1976). 1992;17(10):1229–35.

    Article  CAS  Google Scholar 

  13. Ozgur BM, Berta S, Khiatani V, Taylor WR. Automated intraoperative EMG testing during percutaneous pedicle screw placement. Spine J. 2006;6(6):708–13.

    Article  PubMed  Google Scholar 

  14. Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.

    Article  PubMed  Google Scholar 

  15. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.

    Article  PubMed  Google Scholar 

  16. Rodgers WBC, Cornwall GB, Howell KM, Cohen BA. Safety of XLIF afforded by automated neurophysiology monitoring with neuroVision. In: Goodrich JA, Volcan IJ, editors. eXtreme Lateral Interbody Fusion (XLIF). St. Louis: QMP—Quality Medical Publishing, Inc.; 2008. p. 105–15.

    Google Scholar 

  17. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH. Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res. 1977;126:100–5.

    Google Scholar 

  18. Dawson EG, Sherman JE, Kanim LE, Nuwer MR. Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine (Phila Pa 1976). 1991;16(8 Suppl):S361–4.

    CAS  Google Scholar 

  19. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  20. Keith RW, Stambough JL, Awender SH. Somatosensory cortical evoked potentials: a review of 100 cases of intraoperative spinal surgery monitoring. J Spinal Disord. 1990;3(3):220–6.

    Article  CAS  PubMed  Google Scholar 

  21. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA. “Threshold-level” multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg. 1998;88(3):457–70.

    Article  CAS  PubMed  Google Scholar 

  22. Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30(2):109–16; discussion 16.

    Article  CAS  PubMed  Google Scholar 

  23. DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, et al. Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine (Phila Pa 1976). 2003;28(16):1851–5; discussion 5–6.

    Article  Google Scholar 

  24. Krassioukov AV, Sarjeant R, Arkia H, Fehlings MG. Multimodality intraoperative monitoring during complex lumbosacral procedures: indications, techniques, and long-term follow-up review of 61 consecutive cases. J Neurosurg Spine. 2004;1(3):243–53.

    Article  PubMed  Google Scholar 

  25. Paradiso G, Lee GY, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine (Phila Pa 1976). 2006;31(18):2095–102.

    Article  Google Scholar 

  26. Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8(3):215–21.

    Article  PubMed  Google Scholar 

  27. Quraishi NA, Lewis SJ, Kelleher MO, Sarjeant R, Rampersaud YR, Fehlings MG. Intraoperative multimodality monitoring in adult spinal deformity: analysis of a prospective series of one hundred two cases with independent evaluation. Spine (Phila Pa 1976). 2009;34(14):1504–12.

    Article  Google Scholar 

  28. Limbrick DD Jr, Wright NM. Verification of nerve root decompression during minimally-invasive lumbar microdiskectomy: a practical application of surgeon-driven evoked EMG. Minim Invasive Neurosurg. 2005;48(5):273–7.

    Article  PubMed  Google Scholar 

  29. Glassman SD, Dimar JR, Puno RM, Johnson JR, Shields CB, Linden RD. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine (Phila Pa 1976). 1995;20(12):1375–9.

    Article  CAS  Google Scholar 

  30. Toleikis JR, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, et al. The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disord. 2000;13(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bose B, Wierzbowski LR, Sestokas AK. Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine (Phila Pa 1976). 2002;27(13):1444–50.

    Article  Google Scholar 

  32. Schulze CJ, Munzinger E, Weber U. Clinical relevance of accuracy of pedicle screw placement. A computed tomographic-supported analysis. Spine (Phila Pa 1976). 1998;23(20):2215–20; discussion 20–1.

    Article  CAS  Google Scholar 

  33. Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976). 2001;26(4):347–51.

    Article  CAS  Google Scholar 

  34. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25(20):2637–45.

    Article  CAS  Google Scholar 

  35. Shin BJ, James AR, Njoku IU, Hartl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17(2):113–22.

    Article  PubMed  Google Scholar 

  36. Yang BP, Wahl MM, Idler CS. Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine (Phila Pa 1976). 2012;37(24):2055–60.

    Article  Google Scholar 

  37. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.

    Article  PubMed  Google Scholar 

  38. Youssef JA, Salas VM. Surgeon-interpreted intra-operative electromyograph (EMG) versus conventional EMG pedicle screw testing—a prospective comparison. US Musculoskeletal Rev. 2008;1(2):37–40.

    Google Scholar 

  39. Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496–501.

    Article  Google Scholar 

  40. Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32.

    Article  PubMed  Google Scholar 

  41. Wood MJ, McMillen J. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring—a retrospective review of 627 screws in 150 patients. Int J Spine Surg. 2014;8.

    Article  PubMed Central  Google Scholar 

  42. Bergey DL, Villavicencio AT, Goldstein T, Regan JJ. Endoscopic lateral transpsoas approach to the lumbar spine. Spine (Phila Pa 1976). 2004;29(15):1681–8.

    Article  Google Scholar 

  43. Pimenta LS, Taylor WR. Surgical technique: extreme lateral interbody fusion. In: Goodrich JA, Volcan IJ, editors. eXtreme Lateral Interbody Fusion (XLIF). St. Louis: Quality Medical Publishing; 2008. p. 87–104.

    Google Scholar 

  44. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 2011;36(1):26–32.

    Article  Google Scholar 

  45. Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976). 2010;35(26 Suppl):S355–60.

    Article  Google Scholar 

  46. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976). 2010;35(26 Suppl):S302–11.

    Article  Google Scholar 

  47. Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14(2):290–5.

    Article  PubMed  Google Scholar 

  48. Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976). 2003;28(5):423–8; discussion 7–8.

    Google Scholar 

  49. Jahangiri FR, Sherman JH, Holmberg A, Louis R, Elias J, Vega-Bermudez F. Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Am J Electroneurodiagnostic Technol. 2010;50(4):321–35.

    Article  PubMed  Google Scholar 

  50. Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.

    Article  PubMed  Google Scholar 

  51. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976). 2010;35(26 Suppl):S322–30.

    Article  Google Scholar 

  52. Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19(5):673–80.

    Article  PubMed  Google Scholar 

  53. Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24(Suppl 3):378–85.

    Article  PubMed  Google Scholar 

  54. Narita W, Takatori R, Arai Y, Nagae M, Tonomura H, Hayashida T, et al. Prevention of neurological complications using a neural monitoring system with a finger electrode in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2016;25(4):456–63.

    Article  PubMed  Google Scholar 

  55. Anand N, Hamilton JF, Perri B, Miraliakbar H, Goldstein T. Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine (Phila Pa 1976). 2006;31(20):E748–53.

    Article  Google Scholar 

  56. Garces J, Berry JF, Valle-Giler EP, Sulaiman WA. Intraoperative neurophysiological monitoring for minimally invasive 1- and 2-level transforaminal lumbar interbody fusion: does it improve patient outcome? Ochsner J. 2014;14(1):57–61.

    PubMed  PubMed Central  Google Scholar 

  57. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005;3(2):92–7.

    Article  PubMed  Google Scholar 

  58. Keim RJ. Remote monitoring of evoked potentials. Otolaryngol Head Neck Surg. 1985;93(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  59. Krieger D, Sclabassi RJ. Real-time intraoperative neurophysiological monitoring. Methods. 2001;25(2):272–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Taylor .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    Peripheral/central structures generally benefit from TrEMG and recordings of SpEMG. Central/peripheral tracts at risk benefit most from SSEP and/or MEP monitoring.

  2. 2.

    Which of the following can lead to changes in SSEPs? (select all that apply)

    1. (a)

      Neural pathway compromise associated with patient positioning compression or stretch injuries

    2. (b)

      Halogenated anesthetic agents

    3. (c)

      Nitrous oxide

    4. (d)

      Hypothermia

    5. (e)

      Electrical interference

  3. 3.

    Which type of information is provided by SSEPs? (choose one)

    1. (a)

      Information about the particular nerve stimulated

    2. (b)

      Discrete segmental

    3. (c)

      Dermatomal information

    4. (d)

      Nerve root information

    5. (e)

      All of the above

  4. 4.

    SSEPs capture data from ascending/descending volleys, while MEP or transcranial MEP (TcMEP) captures data from ascending/descending volleys.

  5. 5.

    Which of the following are the benefits of using multimodality monitoring?

    1. (a)

      Multimodality monitoring broadens the structures being tested

    2. (b)

      Reduces the impact of false-negative results by recognizing the test with the highest sensitivity for a potential injury taking place

    3. (c)

      Provides redundancy when technical difficulties cause individual modalities to fail

    4. (d)

      All of the above

  6. 6.

    The use of both EMG and SSEP during complex lumbosacral spine surgeries is ideal due to the high sensitivity/specificity of EMG and the high sensitivity/specificity of SSEP

Answers

  1. 1.

    Peripheral structures generally benefit from TrEMG and recordings of SpEMG.

  • Central tracts at risk benefit most from SSEP and/or MEP monitoring.

  1. 2.

    a, b, c, d, e

  2. 3.

    a

  3. 4.

    SSEPs capture data from ascending volleys, while MEP or transcranial MEP (TcMEP) captures data from descending volleys.

  4. 5.

    d

  5. 6.

    The use of both EMG and SSEP during complex lumbosacral spine surgeries is ideal due to the high sensitivity of EMG and the high specificity of SSEP.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Taylor, S.E., O’Brien, R.A., Taylor, W.R., Hein, L. (2019). Intraoperative Neurophysiology Monitoring. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics