Skip to main content

Minimally Invasive Spine Surgery in the Elderly

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery
  • 981 Accesses

Abstract

Spine surgery in the elderly population is associated with an increased complication rate compared to the younger population, due to the presence of comorbidities, poor bone quality, as well as a decreased physiologic reserve. As our population ages, an asymmetric increase in those over 65 years is occurring, placing higher demands on society and surgeons to treat increasingly severe spinal pathologies in older and sometimes frail patients. At present, there continues to be a lack of level 1 evidence comparing minimally invasive procedures to traditional open techniques in the geriatric population. However, level 2 and 3 evidence suggests that minimally invasive surgery (MIS) of the spine in the elderly (and younger) population lowers complication rates, allows faster surgical recovery rates, and produces equivalent outcomes, for many common spine procedures in this patient population. Specifically related to the elderly, available literature supports MIS decompressions for cervical and lumbar stenosis, MIS discectomy for herniated discs, and lumbar interbody fusions for various pathologies via either lateral lumbar approaches or posterior MIS transforaminal approaches in the elderly population and is therefore a reasonable option and in some cases a better option than traditional open procedures. Furthermore, cortical bone trajectory screws have shown increased pullout strength in osteoporotic bone, as well as minimize the need for extensive posterior exposure. MIS techniques continue to evolve, including advances in endoscopic decompression as well as mini-open decompression and fusion. It is important for spine surgeons to evolve with these advances in order to optimize the surgical treatment of spine pathology in the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federal Interagency forum on aging data. 2012. Cited July 2012.

    Google Scholar 

  2. Weinstein JN, Tosteson TD, Lurie JD, Tosteson A, Blood E, Herkowitz H, et al. Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the Spine Patient Outcomes Research Trial. Spine. 2010;35(14):1329.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith JS, Shaffrey CI, Berven S, Glassman S, Hamill C, Horton W, et al. Operative versus nonoperative treatment of leg pain in adults with scoliosis: a retrospective review of a prospective multicenter database with two-year follow-up. Spine. 2009;34(16):1693.

    Article  PubMed  Google Scholar 

  4. Glassman SD, Berven S, Kostuik J, Dimar JR, Horton WC, Bridwell K. Nonsurgical resource utilization in adult spinal deformity. Spine. 2006;31(8):941.

    Article  PubMed  Google Scholar 

  5. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303(13):1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen RT, Garfin SR. The economics of minimally invasive spine surgery: the value perspective. Spine. 2010;35(26S):S375.

    Article  PubMed  Google Scholar 

  7. Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KMG, Broadstone PA, et al. Rates of infection after spine surgery based on 108,419 procedures: a report from the scoliosis research society morbidity and mortality committee. Spine. 2011;36(7):556.

    Article  PubMed  Google Scholar 

  8. Oldridge NB, Yuan Z, Stoll JE, Rimm AR. Lumbar spine surgery and mortality among Medicare beneficiaries, 1986. Am J Public Health. 1994;84(8):1292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baron EM, Albert TJ. Medical complications of surgical treatment of adult spinal deformity and how to avoid them. Spine. 2006;31(19S):S106.

    Article  PubMed  Google Scholar 

  10. Lee MJ, Konodi MA, Cizik AM, Bransford RJ, Bellabarba C, Chapman JR. Risk factors for medical complication after spine surgery: a multivariate analysis of 1,591 patients. Spine J. 2012;12(3):197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine. 2008;33(9):931.

    Article  PubMed  Google Scholar 

  12. Or S. Tubular diskectomy vs conventional microdiskectomy for sciatica. JAMA. 2009;302(2):149–58.

    Article  PubMed  Google Scholar 

  13. MJ MG, Parker SL, Hilibrand A, Mummaneni P, Glassman SD, Devin CJ, Asher AL. Lumbar surgery in the elderly provides significant health benefit in the US health care system: patient-reported outcomes in 4370 patients from the N2QOD registry. Neurosurgery. 2015;77(Suppl 4):S125–35.

    Google Scholar 

  14. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine. 2007;32(5):537.

    Article  PubMed  Google Scholar 

  15. Perez-Cruet MJ, Fessler RG, Perin NI. Review: complications of minimally invasive spinal surgery. Neurosurgery. 2002;51(5):S2.

    Google Scholar 

  16. Wang HL, Lu FZ, Jiang JY, Ma X, Xia XL, Wang LX. Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J. 2011;124(23):3868.

    PubMed  Google Scholar 

  17. Winder MJ, Thomas KC. Minimally invasive versus open approach for cervical laminoforaminotomy. Can J Neurol Sci. 2011;38(2):262–7.

    Article  PubMed  Google Scholar 

  18. Fessler RG, Khoo LT. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002;51(5):S2.

    Article  Google Scholar 

  19. Gala VC, O’Toole JE, Voyadzis JM, Fessler RG. Posterior minimally invasive approaches for the cervical spine. Orthop Clin North Am. 2007;38(3):339–49.

    Article  PubMed  Google Scholar 

  20. Popov V, Anderson DG. Minimal invasive decompression for lumbar spinal stenosis. Adv Orthop. 2012;2012:645321.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(5):S2.

    Google Scholar 

  22. Palmer S, Davison L. Minimally invasive surgical treatment of lumbar spinal stenosis: two-year follow-up in 54 patients. Surg Neurol Int. 2012;3:41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosen DS, O’Toole JE, Eichholz KM, Hrubes M, Huo D, Sandhu FA, et al. Minimally invasive lumbar spinal decompression in the elderly: outcomes of 50 patients aged 75 years and older. Neurosurgery. 2007;60(3):503.

    Article  PubMed  Google Scholar 

  24. Palmer S, Turner R, Palmer R. Bilateral decompression of lumbar spinal stenosis involving a unilateral approach with microscope and tubular retractor system. J Neurosurg. 2002;97(2):213–7.

    PubMed  Google Scholar 

  25. Çavuşoğlu H, Kaya RA, Türkmenoglu ON, Tuncer C, Çolak İ, Aydın Y. Midterm outcome after unilateral approach for bilateral decompression of lumbar spinal stenosis: 5-year prospective study. Eur Spine J. 2007;16(12):2133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bell VJMGR. Posterior laminectomy without fusion for the treatment of De Novo Scoliosis. Arthritis Arthroplasty. 2009;201(1):201–7.

    Google Scholar 

  27. Kelleher MO, Timlin M, Persaud O, Rampersaud YR. Success and failure of minimally invasive decompression for focal lumbar spinal stenosis in patients with and without deformity. Spine. 2010;35(19):E981–7.

    Article  PubMed  Google Scholar 

  28. Tosteson ANA, Skinner JS, Tosteson TD, Lurie JD, Andersson G, Berven S, et al. The cost effectiveness of surgical versus non-operative treatment for lumbar disc herniation over two years: evidence from the Spine Patient Outcomes Research Trial (SPORT). Spine. 2008;33(19):2108.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Righesso O, Falavigna A, Avanzi O. Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial. Neurosurgery. 2007;61(3):545.

    Article  PubMed  Google Scholar 

  30. Lee P, Liu JC, Fessler RG. Perioperative results following open and minimally invasive single-level lumbar discectomy. J Clin Neurosci. 2011;18(12):1667–70.

    Article  PubMed  Google Scholar 

  31. Yeung AT, Tsou PM. Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases. Spine. 2002;27(7):722.

    Article  PubMed  Google Scholar 

  32. Arts MP, Brand R, van den Akker ME, Koes BW, Bartels RH, Tan W, et al. Tubular diskectomy vs conventional microdiskectomy for the treatment of lumbar disk herniation: 2-year results of a double-blind randomized controlled trial. Neurosurgery. 2011;69(1):135–44. https://doi.org/10.1227/NEU.0b013e318214a98c.

    Article  PubMed  Google Scholar 

  33. Zhao L, Jiang W, Ma W, Xu R, Sun S. Micro-endoscopic discectomy for the treatment of lumbar disc herniation in senile patients over seventy years old. Zhongguo Gu Shang. 2011;24(10):811.

    PubMed  Google Scholar 

  34. Arts M, Brand R, Van Der Kallen B, Lycklama à Nijeholt G, Peul W. Does minimally invasive lumbar disc surgery result in less muscle injury than conventional surgery? A randomized controlled trial. Eur Spine J. 2011;20(1):51–7.

    Article  PubMed  Google Scholar 

  35. Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine: a preliminary report. Clin Orthop. 1983;174:127–32.

    Google Scholar 

  36. Kambin P, editor. Arthroscopic microdiscectomy: minimal intervention spinal surgery. Baltimore: Urban & Schwarzenburg; 1990.

    Google Scholar 

  37. Jasper GP, Francisco GM, Telfeian AE. A retrospective evaluation of the clinical success of transforaminal endoscopic discectomy with foraminotomy in geriatric patients. Pain Physician. 2013;16:225–9.

    PubMed  Google Scholar 

  38. Gadjradj PS, van Tulder MW, Dirven CM, Peul WC, Harhangi BS. Clinical outcomes after percutaneous transforaminal endoscopic discectomy for lumbar disc herniation: a prospective case series. Neurosurg Focus. 2016;40(2):E3.

    Article  PubMed  Google Scholar 

  39. Phan K, Xu J, Schultz K, Alvi MA, Lu VM, Kerezoudis P, Maloney PR, Murphy ME, Mobbs RJ, Bydon M. Full-endoscopic versus micro-endoscopic and open discectomy: a systematic review and meta-analysis of outcomes and complications. Clin Neurol Neurosurg. 2017;154:1–12.

    Article  PubMed  Google Scholar 

  40. Sansalone C, Soldano S, Poli C, Tripepi M, D’aliberti G, Rossetti O. Anterior approach to the spine. Role of the general surgeon, techniques and surgical complications. The 10-year experience of the Niguarda Hospitals. J Neurosurg Sci. 2011;55(4):357.

    CAS  PubMed  Google Scholar 

  41. Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19(5):673–80.

    Article  PubMed  Google Scholar 

  42. Regan JJ, Yuan H, McAfee PC. Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery: a prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine. 1999;24(4):402.

    Article  CAS  PubMed  Google Scholar 

  43. Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20(14):1592.

    Article  CAS  PubMed  Google Scholar 

  44. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26S):S302.

    Article  PubMed  Google Scholar 

  45. Rodgers WB, Gerber EJ, Rodgers JA. Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine. 2010;35(26S):S355.

    Article  PubMed  Google Scholar 

  46. Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23(6):393.

    Article  PubMed  Google Scholar 

  47. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26.

    Article  PubMed  Google Scholar 

  48. Flynn JC, Price CT. Sexual complications of anterior fusion of the lumbar spine. Spine. 1984;9(5):489.

    Article  CAS  PubMed  Google Scholar 

  49. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB. Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg. 1999;91(1):60–4.

    CAS  PubMed  Google Scholar 

  50. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35(26S):S322.

    Article  PubMed  Google Scholar 

  51. Berry SD, Kiel DP, Donaldson MG, Cummings SR, Kanis JA, Johansson H, et al. Application of the National Osteoporosis Foundation Guidelines to postmenopausal women and men: the Framingham Osteoporosis Study. Osteoporos Int. 2010;21(1):53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sohn MJ, Kayanja MM, Kilinçer C, Ferrara LA, Benzel EC. Biomechanical evaluation of the ventral and lateral surface shear strain distributions in central compared with dorsolateral placement of cages for lumbar interbody fusion. J Neurosurg. 2006;4(3):219–24.

    Google Scholar 

  53. Cappuccino A, Cornwall GB, Turner AWL, Fogel GR, Duong HT, Kim KD, et al. Biomechanical analysis and review of lateral lumbar fusion constructs. Spine. 2010;35(26S):S361.

    Article  PubMed  Google Scholar 

  54. Rodgers W, Gerber EJ, Patterson JR. Fusion after minimally disruptive anterior lumbar interbody fusion: analysis of extreme lateral interbody fusion by computed tomography. SAS J. 2010;4(2):63–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Acosta FL Jr, Liu J, Slimack N, Moller D, Fessler R, Koski T. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg. 2011;15(1):92–6.

    Google Scholar 

  56. Benglis DM, Elhammady MS, Levi AD, Vanni S. Minimally invasive anterolateral approaches for the treatment of back pain and adult degenerative deformity. Neurosurgery. 2008;63(3):A191–6.

    Article  Google Scholar 

  57. Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35(26S):S331.

    Article  PubMed  Google Scholar 

  58. Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoasinterbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54(5–6):201–6. Epub 2012 Jan 25.

    CAS  PubMed  Google Scholar 

  59. Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa FP Jr, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg. 2012;16(4):329–33.

    Google Scholar 

  60. Takahashi T, Hanakita J, Minami M, Kitahama Y, Kuraishi K, Watanabe M, et al. Clinical outcomes and adverse events following transforaminal interbody fusion for lumbar degenerative spondylolisthesis in elderly patients. Neurol Med Chir (Tokyo). 2011;51(12):829–35.

    Article  Google Scholar 

  61. Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pull- out strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96–3(Suppl):309–12.

    Google Scholar 

  62. Liu D, Wu ZX, Pan XM, Fu SC, Gao MX, Shi L, Lei W. Biomechanical comparison of different techniques in primary spinal surgery in osteoporotic cadaveric lumbar vertebrae: expansive pedicle screw versus polymethylmethacrylate-augmented pedicle screw. Arch Orthop Trauma Surg. 2011;131(9):1227–32.

    Article  PubMed  Google Scholar 

  63. Yu BS, Zhuang XM, Zheng ZM, Zhang JF, Li ZM, Lu WW. Biomechanical comparison of 4 fixation techniques of sacral pedicle screw in osteoporotic condition. J Spinal Disord Tech. 2010;23(6):404–9.

    Article  PubMed  Google Scholar 

  64. Yu BS, Li ZM, Zhou ZY, Zeng LW, Wang LB, Zheng ZM, Lu WW. Biomechanical effects of insertion location and bone cement augmentation on the anchoring strength of iliac screw. Clin Biomech (Bristol, Avon). 2011;26(6):556–61.

    Article  Google Scholar 

  65. Chang MC, Kao HC, Ying SH, Liu CL. Polymethylmethacrylate augmentation of cannulated pedicle screws for xation in osteo- porotic spines and comparison of its clinical results and biome- chanical characteristics with the needle injection method. J Spinal Disord Tech. 2013;26(6):305–15.

    Article  PubMed  Google Scholar 

  66. Chao KH, Lai YS, Chen WC, Chang CM, McClean CJ, Fan CY, Chang CH, Lin LC, Cheng CK. Biomechanical analysis of dif- ferent types of pedicle screw augmentation: a cadaveric and syn- thetic bone sample study of instrumented vertebral specimens. Med Eng Phys. 2013;35(10):1506–12.

    Article  PubMed  Google Scholar 

  67. Chen LH, Tai CL, Lee DM, Lai PL, Lee YC, Niu CC, Chen WJ. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre- lling. BMC Musculoskelet Disord. 2011;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Choma TJ, Pfeiffer FM, Swope RW, Hirner JP. Pedicle screw design and cement augmentation in osteoporotic vertebrae: effects of fenestrations and cement viscosity on xation and extraction. Spine (Phila Pa 1976). 2012;37(26):E1628–32.

    Article  Google Scholar 

  69. Erdem MN, Karaca S, Sarı S, Yumrukcal F, Tanli R, Aydogan M. Application of cement on strategic vertebrae in the treatment of the osteoporotic spine. Spine J. 2017;17(3):328–37.

    Article  PubMed  Google Scholar 

  70. El Saman A, Meier S, Sander A, Kelm A, Marzi I, Laurer H. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg. 2013;39(5):455–60.

    Article  PubMed  Google Scholar 

  71. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366–73.

    Article  CAS  PubMed  Google Scholar 

  72. Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine (Phila Pa 1976). 2013;38(8):635–41.

    Article  Google Scholar 

  73. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine. 2015;23(4):471–8.

    Article  PubMed  Google Scholar 

  74. Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine (Phila Pa 1976). 2015;40(15):E873–8.

    Article  Google Scholar 

  75. Sansur CA, Caffes NM, Ibrahimi DM, Pratt NL, Lewis EM, Murgatroyd AA, Cunningham BW. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine. 2016;25(4):467–76.

    Article  PubMed  Google Scholar 

  76. Gonchar I, Kotani Y, Matsui Y, Miyazaki T, Kasemura T, Masuko T. Experience of 100 consecutive spine reconstructions using cortical bone trajectory (CBT) screws vs traditional pedicle screws. In: Proceeding of SMISS Global Forum 2014; 2014 Sep 19–21; Miami, FL, USA.

    Google Scholar 

  77. Mizuno M, Kuraishi K, Umeda Y, Sano T, Tsuji M, Suzuki H. Midline lumbar fusion with cortical bone trajectory screw. Neurol Med Chir (Tokyo). 2014;54(9):716–21.

    Article  Google Scholar 

  78. Snyder LA, Martinez-Del-Campo E, Neal MT, Zaidi HA, Awad AW, Bina R, Ponce FA, Kaibara T, Chang SW. Lumbar spinal fixation with cortical bone trajectory pedicle screws in 79 patients with degenerative disease: perioperative outcomes and complications. World Neurosurg. 2016;88:205–13.

    Article  PubMed  Google Scholar 

  79. Dabbous B, Brown D, Tsitlakidis A, Arzoglou V. Clinical outcomes during the learning curve of MIDline Lumbar Fusion (MIDLF®) using the cortical bone trajectory. Acta Neurochir. 2016;158(7):1413–20.

    Article  PubMed  Google Scholar 

  80. Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016;145:41–5.

    Article  PubMed  Google Scholar 

  81. Kim KT, Kim YB. Comparison between open procedure and tubular retractor assisted procedure for cervical radiculopathy: results of a randomized controlled study. J Korean Med Sci. 2009;24(4):649–53.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fessler RG, Khoo LT. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002;51(5 Suppl):S37–45.

    PubMed  Google Scholar 

  83. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016 Mar;24(3):416–27.

    Article  PubMed  Google Scholar 

  84. Kasukawa Y, Miyakoshi N, Hongo M, Ishikawa Y, Kudo D, Shimada Y. Short-term results of transforaminal lumbar interbody fusion using pedicle screw with cortical bone trajectory compared with conventional trajectory. Asian Spine J. 2015;9(3):440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T. Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. J Neurosurg Spine. 2016;25(5):591–5.

    Article  PubMed  Google Scholar 

  86. Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–7.

    Article  PubMed  Google Scholar 

  87. Humphreys SC, Hodges SD, Patwardhan AG, et al. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine (Phila Pa 1976). 2001;26(5):567–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todd Allen .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    According to Phan et al. [71], has the literature shown any difference in outcomes or complications after surgical treatment for lumbar disc herniation with full-endoscopic, micro-endoscopic, or open discectomy?

  2. 2.

    In the elderly, osteoporotic patient, what is the biomechanical advantage of a LLIF cage compared to a PLIF, TLIF, or ALIF cage? Is a stand-alone LLIF feasible in the elderly osteoporotic patient?

  3. 3.

    When comparing a midline lumbar interbody fusion (MID LIF) with CBT screws, to a traditional posterolateral fusion with pedicle screws, what are the advantages of the MIDLIF with regard to (1) soft tissue invasiveness and (2) biomechanical characteristics of the CBT vs. pedicle screws?

Answers

  1. 1.

    No

  2. 2.

    The LLIF cage is larger/wider than the TLIF and PLIF cages and is placed from the lateral approach, allowing the LLIF cage to sit on the stronger outer apophyseal ring of the vertebral body rather than the weaker cancellous bone. This gives it a distinct advantage over the TLIF and PLIF cages in osteoporotic bone. The lateral approach facilitates this cage placement. Compared to the ALIF, though the ALIF cage is often large, it is typically placed in the center of the vertebral body where osteoporotic bone is weaker. If the ALIF cage is not appropriately sized or the approach or vertebra doesn’t allow it to be placed where it contacts/loads the apophyseal ring, the ALIF cage placed centrally may lose some of its large size advantages. In osteoporotic bone, priority should be placed on sitting both the ALIF and LLIF cages onto the stronger outer ring of the vertebral body It is not recommended to use a stand-alone LLIF cage in elderly, osteoporotic patients

  3. 3.

    There is significantly less soft tissue disruption and less dissection using a MID LIF with CBT screws approach, versus an open approach where standard pedicle screws and/or posterolateral fusion is performed In osteoporotic bone, CBT screws have shown superior results in biomechanical studies for pullout strength, insertional torque, stiffness with cephalocaudal and mediolateral loading, and resistance to flexion/extension versus pedicle screws. However, CBT screws have shown inferior results with axial rotation and lateral bending. In osteoporotic bone, it appears they have an overall biomechanical advantage to traditional pedicle screw fixation. Clinically, CBT screws (as a result of their medial starting point) lead to less blood loss and surgical time, and possibly less length of stay, while showing comparable clinic results

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tannous, O., Allen, R.T. (2019). Minimally Invasive Spine Surgery in the Elderly. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics