Skip to main content

Pathologic Fractures

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

As new technologies emerge, the applications of minimally invasive spine surgery continue to expand. The need for minimizing the morbidity of surgical access in debilitated patients has propelled a movement toward the increased use of minimally invasive spine surgery for the treatment of pathologic spine fractures.

Vertebroplasty and kyphoplasty provide an alternative for intractable back pain in patients with pathologic fractures who do not respond to nonoperative measures and who are not medically fit for an open procedure. Anterior endoscopic procedures reduce pulmonary dysfunction and prolonged hospital stay associated with open thoracotomies but have a steep learning curve. Posterior mini-open surgery and percutaneous pedicle screws avoid the complications of anterior surgery while minimizing blood loss and the extensive muscle dissection associated with traditional open surgery. The direct lateral approach allows access to the anterior column, avoiding the approach-related complications of the anterior and posterior approaches but requiring detailed anatomic knowledge to avoid injury to the great vessels and nervous plexus.

Surgical treatment of pathologic vertebral compression fracture continues to change as new medical treatments emerge such as new hormone therapies for osteoporosis, new chemotherapy agents, and stereotactic high-dose radiotherapy for cancer. Even when open radical resections are needed to provide a cure, the principles of minimally invasive surgery of respecting soft tissues and minimizing collateral damage should be applied to reduce infection rates, decrease recovery time, improve functionality, and ultimately improve patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Convertino VA, Bloomfield SA, Greenleaf JE. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29(2):187–90. Epub 1997/02/01

    Article  CAS  PubMed  Google Scholar 

  2. Old JL, Calvert M. Vertebral compression fractures in the elderly. Am Fam Physician. 2004;69(1):111–6. Epub 2004/01/20

    PubMed  Google Scholar 

  3. Melton LJ 3rd. Epidemiology of spinal osteoporosis. Spine. 1997;22(24 Suppl):2S–11. Epub 1998/02/07

    Article  PubMed  Google Scholar 

  4. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989;129(5):1000–11. Epub 1989/05/01

    Article  PubMed  Google Scholar 

  5. Lau E, Ong K, Kurtz S, Schmier J, Edidin A. Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am. 2008;90(7):1479–86. Epub 2008/07/03

    Article  PubMed  Google Scholar 

  6. Ray NF, Chan JK, Thamer M, Melton LJ 3rd. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997;12(1):24–35. Epub 1997/01/01

    Article  CAS  PubMed  Google Scholar 

  7. Riggs BL, Melton LJ 3rd. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17(5 Suppl):505S–11. Epub 1995/11/01

    Article  CAS  PubMed  Google Scholar 

  8. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7(2):221–7. Epub 1992/02/01

    Article  CAS  PubMed  Google Scholar 

  9. Leech JA, Dulberg C, Kellie S, Pattee L, Gay J. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis. 1990;141(1):68–71. Epub 1990/01/01

    Article  CAS  PubMed  Google Scholar 

  10. Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998;8(3):261–7. Epub 1998/11/03

    Article  CAS  PubMed  Google Scholar 

  11. Goz V, Koehler SM, Egorova NN, Moskowitz AJ, Guillerme SA, Hecht AC, et al. Kyphoplasty and vertebroplasty: trends in use in ambulatory and inpatient settings. Spine J. 2011;11(8):737–44. Epub 2011/08/25

    Article  PubMed  Google Scholar 

  12. Cook DJ, Guyatt GH, Adachi JD, Clifton J, Griffith LE, Epstein RS, et al. Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum. 1993;36(6):750–6. Epub 1993/06/01

    Article  CAS  PubMed  Google Scholar 

  13. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pain and disability associated with new vertebral fractures and other spinal conditions. J Clin Epidemiol. 1994;47(3):231–9. Epub 1994/03/01

    Article  CAS  PubMed  Google Scholar 

  14. Thomas KC, Nosyk B, Fisher CG, Dvorak M, Patchell RA, Regine WF, et al. Cost-effectiveness of surgery plus radiotherapy versus radiotherapy alone for metastatic epidural spinal cord compression. Int J Radiat Oncol Biol Phys. 2006;66(4):1212–8. Epub 2006/12/06

    Article  PubMed  Google Scholar 

  15. Falicov A, Fisher CG, Sparkes J, Boyd MC, Wing PC, Dvorak MF. Impact of surgical intervention on quality of life in patients with spinal metastases. Spine. 2006;31(24):2849–56. Epub 2006/11/17

    Article  PubMed  Google Scholar 

  16. Weinstein JN. Differential diagnosis and surgical treatment of pathologic spine fractures. Instr Course Lect. 1992;41:301–15. Epub 1992/01/01

    CAS  PubMed  Google Scholar 

  17. Yao KC, Boriani S, Gokaslan ZL, Sundaresan N. En bloc spondylectomy for spinal metastases: a review of techniques. Neurosurg Focus. 2003;15(5):E6. Epub 2004/08/25

    Article  PubMed  Google Scholar 

  18. DeWald RL, Bridwell KH, Prodromas C, Rodts MF. Reconstructive spinal surgery as palliation for metastatic malignancies of the spine. Spine. 1985;10(1):21–6. Epub 1985/01/01

    Article  CAS  PubMed  Google Scholar 

  19. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine. 2010;35(22):E1221–9. Epub 2010/06/22

    Article  PubMed  Google Scholar 

  20. Abe E, Kobayashi T, Murai H, Suzuki T, Chiba M, Okuyama K. Total spondylectomy for primary malignant, aggressive benign, and solitary metastatic bone tumors of the thoracolumbar spine. J Spinal Disord. 2001;14(3):237–46. Epub 2001/06/05

    Article  CAS  PubMed  Google Scholar 

  21. Roy-Camille R, Saillant G, Bisserie M, Judet T, Hautefort E, Mamoudy P. Total excision of thoracic vertebrae (author’s transl). Rev Chir Orthop Reparatrice Appar Mot. 1981;67(3):421–30. Epub 1981/01/01. Resection vertebrale totale dans la chirurgie tumorale au niveau du rachis dorsal par voie posterieure pure. Technique—indications

    CAS  PubMed  Google Scholar 

  22. York JE, Walsh GL, Lang FF, Putnam JB, McCutcheon IE, Swisher SG, et al. Combined chest wall resection with vertebrectomy and spinal reconstruction for the treatment of Pancoast tumors. J Neurosurg. 1999;91(1 Suppl):74–80. Epub 1999/07/27

    Article  CAS  PubMed  Google Scholar 

  23. Sakaura H, Hosono N, Mukai Y, Ishii T, Yonenobu K, Yoshikawa H. Outcome of total en bloc spondylectomy for solitary metastasis of the thoracolumbar spine. J Spinal Disord Tech. 2004;17(4):297–300. Epub 2004/07/29

    Article  PubMed  Google Scholar 

  24. Liljenqvist U, Lerner T, Halm H, Buerger H, Gosheger G, Winkelmann W. En bloc spondylectomy in malignant tumors of the spine. Eur Spine J. 2008;17(4):600–9. Epub 2008/01/25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Disch AC, Schaser KD, Melcher I, Feraboli F, Schmoelz W, Druschel C, et al. Oncosurgical results of multilevel thoracolumbar en-bloc spondylectomy and reconstruction with a carbon composite vertebral body replacement system. Spine. 2011;36(10):E647–55. Epub 2011/01/11

    Article  PubMed  Google Scholar 

  26. Bohinski RJ, Rhines LD. Principles and techniques of en bloc vertebrectomy for bone tumors of the thoracolumbar spine: an overview. Neurosurg Focus. 2003;15(1):E7. Epub 2004/08/25

    PubMed  Google Scholar 

  27. Kawahara N, Tomita K, Fujita T, Maruo S, Otsuka S, Kinoshita G. Osteosarcoma of the thoracolumbar spine: total en bloc spondylectomy. A case report. J Bone Joint Surg Am. 1997;79(3):453–8. Epub 1997/03/01

    Article  CAS  PubMed  Google Scholar 

  28. Tomita K, Toribatake Y, Kawahara N, Ohnari H, Kose H. Total en bloc spondylectomy and circumspinal decompression for solitary spinal metastasis. Paraplegia. 1994;32(1):36–46. Epub 1994/01/01

    CAS  PubMed  Google Scholar 

  29. Nakamura M, Toyama Y, Suzuki N, Fujimura Y. Metastases to the upper cervical spine. J Spinal Disord. 1996;9(3):195–201. Epub 1996/06/01

    Article  CAS  PubMed  Google Scholar 

  30. York J, Gokaslan Z. Instrumentation of the spine in metastatic disease. In: Errico T, editor. Spine: state of the art reviews. Philadelphia: Hanley & Belfus; 1999. p. 335–50.

    Google Scholar 

  31. Abdu WA, Provencher M. Primary bone and metastatic tumors of the cervical spine. Spine. 1998;23(24):2767–77. Epub 1999/01/08

    Article  CAS  PubMed  Google Scholar 

  32. Jackson RJ, Gokaslan ZL. Occipitocervicothoracic fixation for spinal instability in patients with neoplastic processes. J Neurosurg. 1999;91(1 Suppl):81–9. Epub 1999/07/27

    CAS  PubMed  Google Scholar 

  33. Fourney DR, Abi-Said D, Rhines LD, Walsh GL, Lang FF, McCutcheon IE, et al. Simultaneous anterior-posterior approach to the thoracic and lumbar spine for the radical resection of tumors followed by reconstruction and stabilization. J Neurosurg. 2001;94(2 Suppl):232–44. Epub 2001/04/17

    CAS  PubMed  Google Scholar 

  34. Mazel C, Hoffmann E, Antonietti P, Grunenwald D, Henry M, Williams J. Posterior cervicothoracic instrumentation in spine tumors. Spine. 2004;29(11):1246–53. Epub 2004/05/29

    Article  PubMed  Google Scholar 

  35. McCord DH, Cunningham BW, Shono Y, Myers JJ, McAfee PC. Biomechanical analysis of lumbosacral fixation. Spine. 1992;17(8 Suppl):S235–43. Epub 1992/08/01

    Article  CAS  PubMed  Google Scholar 

  36. Jackson RJ, Gokaslan ZL. Spinal-pelvic fixation in patients with lumbosacral neoplasms. J Neurosurg. 2000;92(1 Suppl):61–70. Epub 2000/01/01

    CAS  PubMed  Google Scholar 

  37. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166–8. Epub 1987/01/01. Note preliminaire sur le traitement des angiomes vertebraux par vertebroplastie acrylique percutanee

    CAS  PubMed  Google Scholar 

  38. Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001;26(14):1631–8. Epub 2001/07/21

    Article  CAS  PubMed  Google Scholar 

  39. Phillips FM, Ho E, Campbell-Hupp M, McNally T, Todd Wetzel F, Gupta P. Early radiographic and clinical results of balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. Spine. 2003;28(19):2260–5; discussion 5–7. Epub 2003/10/02

    Article  PubMed  Google Scholar 

  40. Cotten A, Dewatre F, Cortet B, Assaker R, Leblond D, Duquesnoy B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. 1996;200(2):525–30. Epub 1996/08/01

    Article  CAS  PubMed  Google Scholar 

  41. Phillips FM, Todd Wetzel F, Lieberman I, Campbell-Hupp M. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine. 2002;27(19):2173–8; discussion 8–9. Epub 2002/10/24

    Article  PubMed  Google Scholar 

  42. Ledlie JT, Renfro MB. Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine. 2006;31(1):57–64. Epub 2006/01/06

    Article  PubMed  Google Scholar 

  43. Togawa D, Bauer TW, Lieberman IH, Takikawa S. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate. Spine. 2003;28(14):1521–7. Epub 2003/07/17

    PubMed  Google Scholar 

  44. Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine. 2004;29(11):1203–7. Epub 2004/05/29

    Article  PubMed  Google Scholar 

  45. Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24(15):1521–6. Epub 1999/08/24

    Article  CAS  PubMed  Google Scholar 

  46. Belkoff SM, Mathis JM, Jasper LE. Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol. 2002;23(10):1647–51. Epub 2002/11/13

    PubMed  PubMed Central  Google Scholar 

  47. Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199(1):241–7. Epub 1996/04/01

    Article  CAS  PubMed  Google Scholar 

  48. Oner FC, Verlaan JJ, Verbout AJ, Dhert WJ. Cement augmentation techniques in traumatic thoracolumbar spine fractures. Spine. 2006;31(11 Suppl):S89–95; discussion S104. Epub 2006/05/11

    Article  PubMed  Google Scholar 

  49. Verlaan JJ, van Helden WH, Oner FC, Verbout AJ, Dhert WJ. Balloon vertebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures. Spine. 2002;27(5):543–8. Epub 2002/03/07

    Article  CAS  PubMed  Google Scholar 

  50. Lu WW, Cheung KM, Li YW, Luk KD, Holmes AD, Zhu QA, et al. Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine. 2001;26(24):2684–90; discussion 90–1. Epub 2001/12/12

    Article  CAS  PubMed  Google Scholar 

  51. Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007;16(5):601–10. Epub 2006/11/23

    Article  PubMed  Google Scholar 

  52. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999;25(2 Suppl):17S–21. Epub 1999/08/24

    Article  CAS  PubMed  Google Scholar 

  53. Jefferiss CD, Lee AJ, Ling RS. Thermal aspects of self-curing polymethylmethacrylate. J Bone Joint Surg Br. 1975;57(4):511–8. Epub 1975/11/01

    Article  CAS  PubMed  Google Scholar 

  54. Radin EL, Rubin CT, Thrasher EL, Lanyon LE, Crugnola AM, Schiller AS, et al. Changes in the bone-cement interface after total hip replacement. An in vivo animal study. J Bone Joint Surg Am. 1982;64(8):1188–200. Epub 1982/10/01

    Article  CAS  PubMed  Google Scholar 

  55. Akeyson EW, McCutcheon IE. Single-stage posterior vertebrectomy and replacement combined with posterior instrumentation for spinal metastasis. J Neurosurg. 1996;85(2):211–20. Epub 1996/08/01

    Article  CAS  PubMed  Google Scholar 

  56. Bilsky MH, Boland P, Lis E, Raizer JJ, Healey JH. Single-stage posterolateral transpedicle approach for spondylectomy, epidural decompression, and circumferential fusion of spinal metastases. Spine. 2000;25(17):2240–9; discussion 250. Epub 2000/09/06

    Article  CAS  PubMed  Google Scholar 

  57. Gokaslan ZL, York JE, Walsh GL, McCutcheon IE, Lang FF, Putnam JB Jr, et al. Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurg. 1998;89(4):599–609. Epub 1998/10/07

    Article  CAS  PubMed  Google Scholar 

  58. Wang JC, Boland P, Mitra N, Yamada Y, Lis E, Stubblefield M, et al. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine. 2004;1(3):287–98.

    Article  PubMed  Google Scholar 

  59. Shaw B, Mansfield FL, Borges L. One-stage posterolateral decompression and stabilization for primary and metastatic vertebral tumors in the thoracic and lumbar spine. J Neurosurg. 1989;70(3):405–10. Epub 1989/03/01

    Article  CAS  PubMed  Google Scholar 

  60. Kim DH, O’Toole JE, Ogden AT, Eichholz KM, Song J, Christie SD, et al. Minimally invasive posterolateral thoracic corpectomy: cadaveric feasibility study and report of four clinical cases. Neurosurgery. 2009;64(4):746–52; discussion 52–3. Epub 2009/04/08

    Article  PubMed  Google Scholar 

  61. Deutsch H, Boco T, Lobel J. Minimally invasive transpedicular vertebrectomy for metastatic disease to the thoracic spine. J Spinal Disord Tech. 2008;21(2):101–5. Epub 2008/04/09

    Article  PubMed  Google Scholar 

  62. Cloyd JM, Chou D, Deviren V, Ames CP. En bloc resection of primary tumors of the cervical spine: report of two cases and systematic review of the literature. Spine J. 2009;9(11):928–35. Epub 2009/09/01

    Article  PubMed  Google Scholar 

  63. Chou D, Lu DC. Mini-open transpedicular corpectomies with expandable cage reconstruction. Technical note. J Neurosurg Spine. 2011;14(1):71–7. Epub 2010/12/21

    Article  PubMed  Google Scholar 

  64. Chou D, Wang VY. Trap-door rib-head osteotomies for posterior placement of expandable cages after transpedicular corpectomy: an alternative to lateral extracavitary and costotransversectomy approaches. J Neurosurg Spine. 2009;10(1):40–5. Epub 2009/01/06

    Article  PubMed  Google Scholar 

  65. Coumans J, Khanna A, Lieberman I. Minimally invasive approaches to spinal metastases—endoscopic surgery and vertebral augmentation. In: McLain R, editor. Cancer in the spine—comprehensive care. Totowa: Humana Press; 2006. p. 285–93.

    Chapter  Google Scholar 

  66. St Clair SF, McLain RF. Posterolateral spinal cord decompression in patients with metastasis: an endoscopic assisted approach. Surg Technol Int. 2006;15:257–63. Epub 2006/10/10

    PubMed  Google Scholar 

  67. McLain RF. Endoscopically assisted decompression for metastatic thoracic neoplasms. Spine. 1998;23(10):1130–5. Epub 1998/06/06

    Article  CAS  PubMed  Google Scholar 

  68. McLain RF. Spinal cord decompression: an endoscopically assisted approach for metastatic tumors. Spinal Cord. 2001;39(9):482–7. Epub 2001/09/26

    Article  CAS  PubMed  Google Scholar 

  69. Frantzides CT, Zeni TM, Phillips FM, Mathur S, Zografakis JG, Moore RM, et al. L5-S1 laparoscopic anterior interbody fusion. JSLS. 2006;10(4):488–92. Epub 2007/06/20

    PubMed  PubMed Central  Google Scholar 

  70. Zucherman JF, Zdeblick TA, Bailey SA, Mahvi D, Hsu KY, Kohrs D. Instrumented laparoscopic spinal fusion. Preliminary results. Spine. 1995;20(18):2029–34; discussion 34–5. Epub 1995/09/15

    Article  CAS  PubMed  Google Scholar 

  71. Chung SK, Lee SH, Lim SR, Kim DY, Jang JS, Nam KS, et al. Comparative study of laparoscopic L5-S1 fusion versus open mini-ALIF, with a minimum 2-year follow-up. Eur Spine J. 2003;12(6):613–7. Epub 2003/10/18

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4-L5 fusion: laparoscopic versus mini anterior lumbar interbody fusion. Spine. 2000;25(20):2682–7. Epub 2000/10/18

    Article  CAS  PubMed  Google Scholar 

  73. Kaiser MG, Haid RW Jr, Subach BR, Miller JS, Smith CD, Rodts GE Jr. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: a retrospective review. Neurosurgery. 2002;51(1):97–103; discussion 103–5. Epub 2002/08/17

    Article  PubMed  Google Scholar 

  74. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43. Epub 2006/07/11

    Article  PubMed  Google Scholar 

  75. Khan SN, Cha T, Hoskins JA, Pelton M, Singh K. Minimally invasive thoracolumbar corpectomy and reconstruction. Orthopedics. 2012;35(1):e74–9. Epub 2012/01/11

    PubMed  Google Scholar 

  76. Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine. 2010;35(26 Suppl):S338–46. Epub 2011/01/05

    Article  PubMed  Google Scholar 

  77. Uribe JS, Smith WD, Pimenta L, Hartl R, Dakwar E, Modhia UM, et al. Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine. 2012;16(3):264–79. Epub 2011/12/20

    Article  PubMed  Google Scholar 

  78. Deviren V, Kuelling FA, Poulter G, Pekmezci M. Minimal invasive anterolateral transthoracic transpleural approach: a novel technique for thoracic disc herniation. A review of the literature, description of a new surgical technique and experience with first 12 consecutive patients. J Spinal Disord Tech. 2011;24(5):E40–8. Epub 2011/07/01

    Article  PubMed  Google Scholar 

  79. Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13(2):260–6. Epub 2010/08/03

    Article  PubMed  Google Scholar 

  80. Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009;10(2):139–44. Epub 2009/03/13

    Article  PubMed  Google Scholar 

  81. Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28(5):423–8; discussion 7–8. Epub 2003/03/05

    PubMed  Google Scholar 

  82. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine. 2009;34(12):1330–5. Epub 2009/05/21

    Article  PubMed  Google Scholar 

  83. Bergey DL, Villavicencio AT, Goldstein T, Regan JJ. Endoscopic lateral transpsoas approach to the lumbar spine. Spine. 2004;29(15):1681–8. Epub 2004/07/31

    Article  PubMed  Google Scholar 

  84. Esses SI, McGuire R, Jenkins J, Finkelstein J, Woodard E, Watters WC 3rd, et al. The treatment of symptomatic osteoporotic spinal compression fractures. J Am Acad Orthop Surg. 2011;19(3):176–82. Epub 2011/03/04

    Article  PubMed  Google Scholar 

  85. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557–68. Epub 2009/08/07

    Article  CAS  PubMed  Google Scholar 

  86. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361(6):569–79. Epub 2009/08/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92. Epub 2010/08/13

    Article  PubMed  Google Scholar 

  88. Hentschel SJ, Burton AW, Fourney DR, Rhines LD, Mendel E. Percutaneous vertebroplasty and kyphoplasty performed at a cancer center: refuting proposed contraindications. J Neurosurg Spine. 2005;2(4):436–40. Epub 2005/05/06

    Article  PubMed  Google Scholar 

  89. Amar AP, Larsen DW, Esnaashari N, Albuquerque FC, Lavine SD, Teitelbaum GP. Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery. 2001;49(5):1105–14; discussion 14–5. Epub 2002/02/16

    CAS  PubMed  Google Scholar 

  90. Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000;25(8):923–8. Epub 2000/04/18

    Article  CAS  PubMed  Google Scholar 

  91. Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, et al. Percutaneous vertebroplasty: state of the art. Radiographics. 1998;18(2):311–20; discussion 20–3. Epub 1998/04/16

    Article  CAS  PubMed  Google Scholar 

  92. Peters KR, Guiot BH, Martin PA, Fessler RG. Vertebroplasty for osteoporotic compression fractures: current practice and evolving techniques. Neurosurgery. 2002;51(5 Suppl):S96–103. Epub 2002/09/18

    PubMed  Google Scholar 

  93. Cortet B, Cotten A, Boutry N, Dewatre F, Flipo RM, Duquesnoy B, et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev Rhum Engl Ed. 1997;64(3):177–83. Epub 1997/03/01

    CAS  PubMed  Google Scholar 

  94. Fourney DR, Schomer DF, Nader R, Chlan-Fourney J, Suki D, Ahrar K, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg. 2003;98(1 Suppl):21–30. Epub 2003/01/28

    PubMed  Google Scholar 

  95. Barragan-Campos HM, Vallee JN, Lo D, Cormier E, Jean B, Rose M, et al. Percutaneous vertebroplasty for spinal metastases: complications. Radiology. 2006;238(1):354–62. Epub 2005/12/24

    Article  PubMed  Google Scholar 

  96. Chew C, Ritchie M, O’Dwyer PJ, Edwards R. A prospective study of percutaneous vertebroplasty in patients with myeloma and spinal metastases. Clin Radiol. 2011;66(12):1193–6. Epub 2011/10/05

    Article  CAS  PubMed  Google Scholar 

  97. Syed MI, Jan S, Patel NA, Shaikh A, Marsh RA, Stewart RV. Fatal fat embolism after vertebroplasty: identification of the high-risk patient. AJNR Am J Neuroradiol. 2006;27(2):343–5. Epub 2006/02/18

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Axelsen M, Thomassen LD, Bunger C, Bendtsen M, Zou X, Flo C, et al. Estimating risk of pulmonary neoplastic embolism during vertebroplasty. Spine. 2012;37(7):551–6. Epub 2011/08/23

    Article  PubMed  Google Scholar 

  99. Fredder I, McAfee P, Cappuccino A, McNulty P, Kotani Y, Cunningham B, editors. Thoracoscopic anterior spinal decompression, fusion, instrumentation versus thoracotomy in the thoracic spine: a sheep model. Minneapolis: Ninth Annual North American Spine Society; 1994.

    Google Scholar 

  100. Horowitz MB, Moossy JJ, Julian T, Ferson PF, Huneke K. Thoracic discectomy using video assisted thoracoscopy. Spine. 1994;19(9):1082–6. Epub 1994/05/01

    Article  CAS  PubMed  Google Scholar 

  101. Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56(3):736–8. Epub 1993/09/01

    Article  CAS  PubMed  Google Scholar 

  102. Regan JJ, Mack MJ, Picetti GD 3rd. A technical report on video-assisted thoracoscopy in thoracic spinal surgery. Preliminary description. Spine. 1995;20(7):831–7. Epub 1995/04/01

    Article  CAS  PubMed  Google Scholar 

  103. Kan P, Schmidt MH. Minimally invasive thoracoscopic approach for anterior decompression and stabilization of metastatic spine disease. Neurosurg Focus. 2008;25(2):E8. Epub 2008/08/05

    Article  PubMed  Google Scholar 

  104. Amini A, Beisse R, Schmidt MH. Thoracoscopic debridement and stabilization of pyogenic vertebral osteomyelitis. Surg Laparosc Endosc Percutan Tech. 2007;17(4):354–7. Epub 2007/08/22

    Article  PubMed  Google Scholar 

  105. Coltharp WH, Arnold JH, Alford WC Jr, Burrus GR, Glassford DM Jr, Lea JW, et al. Videothoracoscopy: improved technique and expanded indications. Ann Thorac Surg. 1992;53(5):776–8; discussion 9. Epub 1992/05/11

    Article  CAS  PubMed  Google Scholar 

  106. Kaiser LR. Video-assisted thoracic surgery. Current state of the art. Ann Surg. 1994;220(6):720–34. Epub 1994/12/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mack MJ, Aronoff RJ, Acuff TE, Douthit MB, Bowman RT, Ryan WH. Present role of thoracoscopy in the diagnosis and treatment of diseases of the chest. Ann Thorac Surg. 1992;54(3):403–8; discussion 7–9. Epub 1992/09/01

    Article  CAS  PubMed  Google Scholar 

  108. Eck JC. Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J. 2011;11(9):904–8. Epub 2011/08/02

    Article  PubMed  Google Scholar 

  109. Karikari IO, Nimjee SM, Hardin CA, Hughes BD, Hodges TR, Mehta AI, et al. Extreme lateral interbody fusion approach for isolated thoracic and thoracolumbar spine diseases: initial clinical experience and early outcomes. J Spinal Disord Tech. 2011;24(6):368–75. Epub 2010/12/15

    Article  PubMed  Google Scholar 

  110. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26 Suppl):S302–11. Epub 2011/01/05

    Article  PubMed  Google Scholar 

  111. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26–32. Epub 2010/12/31

    Article  PubMed  Google Scholar 

  112. Banagan K, Gelb D, Poelstra K, Ludwig S. Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Spine. 2011;36(11):E687–91. Epub 2011/01/11

    Article  PubMed  Google Scholar 

  113. Smith WD, Christian G, Serrano S, Malone KT. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19:673–80.

    Article  PubMed  Google Scholar 

  114. Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD. Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approach. Spine. 2010;35(26 Suppl):S347–54. Epub 2011/01/05

    Article  PubMed  Google Scholar 

  115. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine. 2010;35(26 Suppl):S322–30. Epub 2011/01/05

    Article  PubMed  Google Scholar 

  116. Archavlis E, Schwandt E, Kosterhon M, Gutenberg A, Alrich P, Nimer A, Giese A, Kantelhardt SR. A modified microsurgical endoscopic-assisted transpedicular corpectomy of the thoracic spine based on virtual 3-dimensional planning. World Neurosurg. 2016;91:424–33. Epub 2016 Apr 20

    Article  PubMed  Google Scholar 

  117. Clement S, Jean-Marc M, Radwan H, Pierre R. Complicatinos and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6(2):89–97.

    Article  Google Scholar 

  118. Woods K, Billys J, Hynes R. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53. Epub 2016 Nov 21

    Article  PubMed  Google Scholar 

  119. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18.

    PubMed  PubMed Central  Google Scholar 

  120. Mohme M, Riethdorf S, Dreimann M, Werner S, Maire CL, Joosse SA, et al. Circulating tumour cell release after cement augmentation of vertebral metastases. Sci Rep. 2017;7(1):7196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Gu YF, Tian QH, Li YD, Wu CG, Su Y, Song HM, et al. Percutaneous vertebroplasty and interventional tumor removal for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement: a prospective pilot study. J Pain Res. 2017;10:211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee CY, Wu MH, Li YY, Cheng CC, Lee CY, et al. Video-assisted thoracoscopic surgery and minimal access spinal surgery compared in anterior thoracic or thoracolumbar junctional spinal reconstruction: a case-control study and review of the literature. Biomed Res Int. 2016;2016:6808507. https://doi.org/10.1155/2016/6808507.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ravindra VM, Brock A, Awad AW, Kalra R, Schmidt MH. The role of the mini-open thoracoscopic-assisted approach in the managemet of metastatic spine disease at the thoracolumbar junction. Neurosurg Focus. 2016;41(2):E16.

    Article  PubMed  Google Scholar 

  124. Lau D, Chou D. Posterior thoracic corpectomy with cage reconstruction for metastatic spinal tumors: comparing the mini-open approach to the open approach. J Neurosurg Spine. 2015;23(2):217–27.

    Article  PubMed  Google Scholar 

  125. Lau D, Chou D. Minimally invasive instrumentation without fusion during posterior thoracic corpectomies: a comparison of percutaneously instrumented nonfused segments with open instrumented fused segments. J Neurosurg Spine. 2017;27(1):35–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd H. Berven .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    How does the mortality of patients with osteoporotic vertebral compression fractures (OVCP) compare to that of age-matched controls?

  2. 2.

    What are the potential benefits of MIS for pathologic compression fracture?

  3. 3.

    What should indications for surgery in the setting of pathologic fracture include?

  4. 4.

    Decompression and stabilization are generally considered in patient with a life expectancy greater than _____ months.

  5. 5.

    In pathologic compression fracture of the thoracic spine, posterior stabilization should be performed in what setting?

  6. 6.

    True or false: Vertebroplasty/kyphoplasty should be used in the setting of primary spinal tumor.

  7. 7.

    True or false: A single posterior midline incision is preferred to multiple percutaneous incisions in the setting of the mini-open posterior approach.

  8. 8.

    True or false: MIS anterior approaches are considered appropriate for curative surgery in the setting of spinal tumors.

  9. 9.

    In patients treated for fracture, infection, disc herniation, and malignancy of the thoracic and thoracolumbar spine, the mini-open anterior approach has been found to have what advantages over VATS?

Answers

  1. 1.

    Patients with OVCP have two times the mortality of age-matched controls over 8 years.

  2. 2.

    Limited blood loss and soft tissue dissection in debilitated patients who may not be candidates for open surgery thereby avoiding prolonged immobilization and pain relief in the case of failed nonoperative management.

  3. 3.

    Intractable pain, spinal instability, and progressive neurologic deficit.

  4. 4.

    Decompression and stabilization are generally not considered unless the patient is predicted to have greater than 3-month life expectancy.

  5. 5.

    Posterior stabilization should be strongly considered if there is disruption of the posterior elements, if multiple levels are involved, and in the presence of severe kyphotic deformity.

  6. 6.

    False. Recent evidence demonstrates a temporary increase in circulating tumor cells after cement augmentation in the setting of pathologic compression fracture of the spine. This raises concern for possible neoplastic embolization during these procedures.

  7. 7.

    True. Several authors report an increase in wound complications with multiple stab incisions and prefer a single midline incision with percutaneous placement of pedicle screws through the fascia.

  8. 8.

    False. Due to the small working window utilized in tubular-assisted anterior approaches, they are generally not considered a good option for curative surgery.

  9. 9.

    The mini-open anterior approach has been found to have significantly less blood loss, operative time, and technique-related complications than VATS without a significant difference in overall complication rate.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrer, A., Schairer, W.W., Chou, D., Pekmezci, M., Deviren, V., Berven, S.H. (2019). Pathologic Fractures. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics