Skip to main content

Navigated Spinal Fusion

  • Chapter
  • First Online:
Book cover Minimally Invasive Spine Surgery

Abstract

3D navigation options offer new opportunities for more precise navigation in spinal surgery, favor reduction of radiation exposure for the surgical team, and accelerate surgical workflow. Recently, the latest concept of “total navigation” using iCT NAV in spinal surgery has been introduced. Therefore, workflows have changed from what they were before using X-ray and fluoroscopy. Although several groups have described reduced radiation exposure for the surgical staff, fastest surgical workflows, and improved screw implantation accuracy, there is not enough evidence available to prove a significant benefit over the institutional costs.

Total navigation makes spine surgery safer and more accurate and enhances efficient and reproducible workflows. Fluoroscopy and radiation exposure for the surgical staff can be eliminated in the majority of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra D, et al. Instrumentation of the posterior thoracolumbar spine: from wires to pedicle screws. Neurosurgery. 2014;10(Suppl 4):497–504; discussion 505

    PubMed  Google Scholar 

  2. Kalfas IH. Image-guided spinal navigation: principles and clinical applications. In: Ozgur B, Benzel E, Garfin S, editors. Minimally invasive spine surgery: a practical guide to anatomy and techniques. New York, NY: Springer; 2009. p. 7–22.

    Chapter  Google Scholar 

  3. Kalfas IH. Image-guided spinal navigation: principles and clinical applications. In: Ozgur B, Benzel E, Garfin S, editors. Minimally invasive spine surgery: a practical guide to anatomy and techniques. 1st ed. New York: Springer; 2012.

    Google Scholar 

  4. Kalfas IH. Image-guided spinal navigation: application to spinal metastases. Neurosurg Focus. 2001;11(6):e5.

    Article  CAS  PubMed  Google Scholar 

  5. Härtl R, Korge A. Minimally invasive spine surgery: techniques, evidence,e and controversies. New York: Thieme; 2012.

    Google Scholar 

  6. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck's Arch Surg. 2013;398(4):501–14.

    Article  Google Scholar 

  7. Holly LT. Image-guided spinal surgery. Int J Med Robot. 2006;2(1):7–15.

    Article  PubMed  Google Scholar 

  8. Sanders R, et al. Exposure of the orthopaedic surgeon to radiation. J Bone Joint Surg Am. 1993;75(3):326–30.

    Article  CAS  PubMed  Google Scholar 

  9. Rampersaud YR, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25(20):2637–45.

    Article  CAS  Google Scholar 

  10. Kalfas IH, et al. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg. 1995;83(4):641–7.

    Article  CAS  PubMed  Google Scholar 

  11. Murphy MA, et al. Frameless stereotaxis for the insertion of lumbar pedicle screws. J Clin Neurosci. 1994;1(4):257–60.

    Article  CAS  PubMed  Google Scholar 

  12. Allam Y, et al. Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between free hand and a generic 3D-based navigation techniques. Eur Spine J. 2013;22(3):648–53.

    Article  PubMed  Google Scholar 

  13. Tian NF, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20(6):846–59.

    Article  PubMed  Google Scholar 

  14. Rivkin MA, Yocom SS. Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus. 2014;36(3):E7.

    Article  PubMed  Google Scholar 

  15. Aoude AA, et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015;24(5):990–1004.

    Article  PubMed  Google Scholar 

  16. Kotani Y, et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976). 2007;32(14):1543–50.

    Article  Google Scholar 

  17. Laine T, et al. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Navarro-Ramirez R, et al. Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative-CT 3D navigation system. World Neurosurg. 2017;100:325.

    Article  PubMed  Google Scholar 

  19. Gelalis ID, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.

    Article  PubMed  Google Scholar 

  20. Shin BJ, et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17(2):113–22.

    Article  PubMed  Google Scholar 

  21. Van de Kelft E, et al. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580–7.

    Article  Google Scholar 

  22. Scheufler KM, et al. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery. 2011;69(6):1307–16.

    Article  PubMed  Google Scholar 

  23. Santos ER, et al. Comparison of open and percutaneous lumbar pedicle screw revision rate using 3-D image guidance and intraoperative CT. Orthopedics. 2015;38(2):e129–34.

    Article  PubMed  Google Scholar 

  24. Technologists, A.S.o.R. X-ray risk calculator. 2016 [cited 2017 03302017]; Available from: http://www.xrayrisk.com/calculator/calculator-normal-studies.php?id=26.

  25. Nolte LP, et al. Computer-aided fixation of spinal implants. J Image Guid Surg. 1995;1(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  26. Karhade AV, Vasudeva VS, Pompeu YA, Lu Y. Image guided spine surgery: available technology and future potential. Austin Neurosurg Open Access. 2016;3(1):1043.

    Google Scholar 

  27. Brodwater BK, et al. Extracranial application of the frameless stereotactic operating microscope: experience with lumbar spine. Neurosurgery. 1993;32(2):209–13; discussion 213

    Article  CAS  PubMed  Google Scholar 

  28. Nolte L, et al. Image-guided computer-assisted spine surgery: a pilot study on pedicle screw fixation. Stereotact Funct Neurosurg. 1996;66(1–3):108–17.

    Article  CAS  PubMed  Google Scholar 

  29. Foley KT, Smith MM. Image-guided spine surgery. Neurosurg Clin N Am. 1996;7(2):171–86.

    Article  CAS  PubMed  Google Scholar 

  30. Wood MJ, McMillen J. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring – a retrospective review of 627 screws in 150 patients. Int J Spine Surg. 2014;8

    Article  PubMed Central  Google Scholar 

  31. Larson AN, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):e23–9.

    Article  PubMed  Google Scholar 

  32. Patel AA, Whang PG, Vaccaro AR. Overview of computer-assisted image-guided surgery of the spine. Semin Spine Surg. 2008;20(3):186–94.

    Article  Google Scholar 

  33. Ringel F, et al. Navigation, robotics, and intraoperative imaging in spinal surgery. In: Schramm J, editor. Advances and technical standards in neurosurgery: volume 41. Cham: Springer; 2014. p. 3–22.

    Chapter  Google Scholar 

  34. Acosta FL Jr, et al. Use of intraoperative isocentric C-arm 3D fluoroscopy for sextant percutaneous pedicle screw placement: case report and review of the literature. Spine J. 2005;5(3):339–43.

    Article  PubMed  Google Scholar 

  35. Hedrick MH, Fraser JK. Processing regenerative cells from adipose tissue for placement in patient suffering from e.g. liver disorder involves separating, concentrating, and manipulating regenerative cells for enhancement of therapeutic effects. San Diego, California: Cytori Therapeutics Inc; 2008.

    Google Scholar 

  36. Hahn P, et al. A new electromagnetic navigation system for pedicle screws placement: a human cadaver study at the lumbar spine. PLoS One. 2015;10(7):e0133708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Papadopoulos EC, et al. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5(3):263–7.

    Article  PubMed  Google Scholar 

  38. Kalfas IH. Benzel’s Spine Surgery - 193 Intraoperative Imaging of the Spine. 4th ed. Amsterdam, Netherlands: Elsevier; 2017.

    Google Scholar 

  39. Njoku I, et al. Minimally invasive 2D navigation-assisted treatment of thoracolumbar spinal fractures in East Africa: a case report. Cureus. 2016;8(2):e507.

    PubMed  PubMed Central  Google Scholar 

  40. Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(3. Suppl):324–9.

    PubMed  Google Scholar 

  41. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin N Am. 2008;52(4):707–30.

    Article  PubMed  Google Scholar 

  42. Schafer S, et al. Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med Phys. 2011;38(8):4563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nottmeier EW. A review of image-guided spinal surgery. J Neurosurg Sci. 2012;56(1):35–47.

    CAS  PubMed  Google Scholar 

  44. Tjardes T, et al. Image-guided spine surgery: state of the art and future directions. Eur Spine J. 2010;19(1):25–45.

    Article  PubMed  Google Scholar 

  45. Baaj AA, Beckman J, Smith DA. O-Arm-based image guidance in minimally invasive spine surgery: technical note. Clin Neurol Neurosurg. 2013;115(3):342–5.

    Article  PubMed  Google Scholar 

  46. Mendelsohn D, et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016;16(3):343–54.

    Article  PubMed  Google Scholar 

  47. Lee MH, et al. Feasibility of intra-operative computed tomography navigation system for pedicle screw insertion of the thoraco-lumbar spine. J Spinal Disord Tech. 2013;26(5):E183–7.

    Article  PubMed  Google Scholar 

  48. Houten JK, Nasser R, Baxi N. Clinical assessment of percutaneous lumbar pedicle screw placement using the O-arm multidimensional surgical imaging system. Neurosurgery. 2012;70(4):990–5.

    Article  PubMed  Google Scholar 

  49. Slomczykowski M, et al. Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976). 1999;24(10):975–82; discussion 983

    Article  CAS  Google Scholar 

  50. Hartl R, et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162–72.

    Article  PubMed  Google Scholar 

  51. Khanna AR, Yanamadala V, Coumans JV. Effect of intraoperative navigation on operative time in 1-level lumbar fusion surgery. J Clin Neurosci. 2016;32:72–6.

    Article  PubMed  Google Scholar 

  52. Meng XT, et al. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis. Neurosurg Rev. 2016;39(3):385–91.

    Article  PubMed  Google Scholar 

  53. Shin BJ, et al. Navigated guide tube for the placement of mini-open pedicle screws using stereotactic 3D navigation without the use of K-wires: technical note. J Neurosurg Spine. 2013;18(2):178–83.

    Article  PubMed  Google Scholar 

  54. Joseph JR, et al. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine. 2016;25(3):339–44.

    Article  PubMed  Google Scholar 

  55. Lian X, et al. Total 3D Airo(R) navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:5027340.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang Y, et al. Navigated 2-level posterior lumbar fusion: a 5-cm-incision procedure. J Orthop Surg Res. 2016;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim TT, et al. Minimally invasive spinal surgery with intraoperative image-guided navigation. Biomed Res Int. 2016;2016:5716235.

    PubMed  PubMed Central  Google Scholar 

  58. Nasser R, et al. Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurg Focus. 2016;41(2):E15.

    Article  PubMed  Google Scholar 

  59. Yang YK, et al. Computer navigation-aided resection of sacral chordomas. Chin Med J. 2016;129(2):162–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Härtl .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    What intraoperative imaging technologies are available? Mention at least four.

  2. 2.

    What method is still the most reliable and cost-effective?

  3. 3.

    Mention two limitations of the state-of-the-art technologies (iCT).

  4. 4.

    Mention the critical steps for a successful spine navigation case.

Answers

  1. 1.

    Conventional X-rays Fluoroscopy Intraoperative cone beam CT scanner (e.g., O-arm) Intraoperative fan beam CT (e.g., Airo)

  2. 2.

    Fluoroscopy

  3. 3.

    Costs/benefit Has not shown a significant improvement on clinical and/or radiological outcomes compared with conventional methods (fluoroscopy)

  4. 4.

    Localization Confirmation using anatomical landmarks If shifting is suspected, accuracy must be re-tested using anatomical landmarks Spinal navigation does not substitute mastering the anatomy

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luís, A., Navarro-Ramirez, R., Kirnaz, S., Nakhla, J., Härtl, R. (2019). Navigated Spinal Fusion. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics