Skip to main content

Economics of Minimally Invasive Spine Surgery

  • Chapter
  • First Online:
  • 971 Accesses

Abstract

Due to increasing cost, healthcare delivery in its present state is unsustainable in many nations. A key component of health reform is the assessment of resource allocation and the active support of interventions that demonstrate the best value. For clinicians to contribute to healthcare reform in a meaningful way, insight into the decision-making language (e.g., quality-adjusted life year or cost per QALY gained) used by governments, payers, and policy makers is crucial. Minimally invasive surgery (MIS), which is typically associated with greater up-front cost, has demonstrated good value for techniques such as arthroscopic and laparoscopic surgery; however, the value of minimally invasive spine surgery (MISS) remains controversial. Although many types of health economic evaluations (HEEs) exist, a cost-effectiveness analysis (CEA) which simultaneously considers both the comparative clinical effectiveness and cost of intervention is the method of choice for HEE.

Current, low-to-moderate quality comparative data suggest that MIS lumbar fusion provides at least equivalent clinical outcome in the midterm and consistently demonstrates quality and cost-benefits in the perioperative period compared to open fusion. The initial increase in direct cost of MIS fusion appears to be offset by the perioperative benefits which produce an overall net cost savings. Of the available literature, one economic study has performed a CEA (cost/QALY), the results of which favored MIS fusion compared to open 1–2-level fusion. Going forward, more comprehensive HEEs comparing the outcome effect over time, ongoing healthcare utilization, and perhaps most importantly the difference in indirect cost such as return to activity (i.e., productivity) of MIS versus open spine surgery will support a broader adoption of minimally invasive spine surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Organization for Economic Co-operation and Development (OECD). Retrieved on 5 July 2012 from www.oecd.org.

  2. Deluzio KJ, Lucio JC, Rodgers WB. Value and cost in less invasive spinal fusion surgery: lessons from a community hospital. SAS J. 2010;4:37–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Institute of Medicine. Initial national priorities for comparative effectiveness research. Washington, DC: National Academies Press; 2009.

    Google Scholar 

  4. Iglehart JK. Prioritizing comparative effectiveness research—IOM recommendations. N Engl J Med. 2009;361:325–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sox H. Defining comparative effectiveness research: the importance of getting it right. Med Care. 2010;48(6):S7–8.

    Article  PubMed  Google Scholar 

  6. Buckwalter JA, Heckman JD, Petrie DP, AOA. An AOA issue: aging of the North American population: new challenges for orthopaedics. J Bone Joint Surg Am. 2003;85:748–58.

    Article  PubMed  Google Scholar 

  7. Agency for Healthcare Research and Quality. Healthcare cost and utilization project. HCUPnet. Available at: http://ahrq.gov/data/hcup/. Accessed 5 July 2012.

  8. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. 2010;303(13):1259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deyo RA, Gray DT, Kreuter W, et al. United States trends in lumbar fusion surgery for degenerative conditions. Spine. 2005;30:1441–5; discussion 1446–7.

    Article  PubMed  Google Scholar 

  10. Cowan JA Jr, Dimick JB, Wainess R, et al. Changes in the utilization of spinal fusion in the United States. Neurosurgery. 2006;59:15–20; discussion 15–20.

    Article  PubMed  Google Scholar 

  11. Weinstein JN, Lurie JD, Olson PR, et al. United States’ trends and regional variations in lumbar spine surgery: 1992–2003. Spine. 2006;31:2707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kurtz S, Mowat F, Ong K, et al. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87:1487–97.

    PubMed  Google Scholar 

  13. Jain NB, Higgins LD, Ozumba D, et al. Trends in epidemiology of knee arthroplasty in the United States, 1990–2000. Arthritis Rheum. 2005;52:3928–33.

    Article  PubMed  Google Scholar 

  14. Tosteson ANA, Tosteson TD, Lurie JD, Abdu W, Herkowitz H, Andersson G, Albert T, Bridwell K, Zhao W, Grove MR, Weinstein MC, Weinstein JM. Comparative effectiveness evidence from the spine patient outcomes research trial: surgical versus nonoperative care for spinal stenosis, degenerative spondylolisthesis and intervertebral disc herniation. Spine. 2011;36(24):2061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weinstein JN, Lurie JD, Tosteson TD, Tosteson AN, Blood EA, Abdu WA, Herkowitz H, Hilibrand A, Albert T, Fischgrund J. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the spine patient outcomes research trial (SPORT). Spine. 2008;33(25):2789–800.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weinstein JN, Lurie JD, Tosteson TD, Zhao W, Blood EA, Tosteson AN, Birkmeyer N, Herkowitz H, Longley M, Lenke L, Emery S, Hu SS. Surgical compared with nonoperative treatment for lumbar degenerative spondylolisthesis: four-year results in the spine patient outcomes research trial (SPORT) randomized and observational cohorts. J Bone Joint Surg Am. 2009;91(6):1295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weinstein JN, Tosteson T, Lurie JD, Tosteson A, Blood E, Herkowitz H, Cammisa F, Albert T, Boden SD, Hilibrand A, Goldberg H, Berven S, An H. Surgical versus nonoperative treatment for lumbar spinal stenosis: four-year results if the spine patient outcomes research trial (SPORT). Spine. 2010;35(14):1329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rihn JA, Berven S, Allen T, et al. Defining value in spine care. Am J Med Qual. 2009;24:4S–14.

    Article  PubMed  Google Scholar 

  19. Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, Sullivan SD. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656–64.

    Article  CAS  PubMed  Google Scholar 

  20. Primer on cost-effectiveness analysis. American College of Physicians Internal Medicine Doctors for adults website. Effective clinical practice. September/October 2000. http://www.acponline.org/clinical_information/journals_publications/ecp/sepoct00/primer.htm. Accessed 20 July 2012.

  21. Drummond MF, Sculpher MJ, Torrance GW, et al. Methods for the economic evaluation of health care programmes. Oxford: Oxford University Press; 1997.

    Google Scholar 

  22. Detsky AS, Laupacis A. Relevance of cost-effectiveness analysis to clinicians and policy makers. JAMA. 2007;298(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  23. Detsky AS, Naglie IGA. Clinician’s guide to cost-effectiveness analysis. Ann Intern Med. 1990;113(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  24. Wynia M. Cost-effectiveness analysing in the United States. JAMA. 2006;295:2722.

    Article  CAS  PubMed  Google Scholar 

  25. Kasis AG, Marshman LA, Krishna M, Bhatia CK. Significantly improved outcomes with a less invasive posterior lumbar interbody fusion incorporating total facetectomy. Spine. 2009;34(6):572–7.

    Article  PubMed  Google Scholar 

  26. Starkweather AR, Witek-Janusek L, Nockels RP, Peterson J, Mathews HL. The multiple benefits of minimally invasive spinal surgery: results comparing transforaminal lumbar interbody fusion and posterior lumbar fusion. J Neurosci Nurs. 2008;40(1):32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine. 2007;32(5):537–43.

    Article  PubMed  Google Scholar 

  28. Scheufler KM, Dohmen H, Vougioukas VI. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery. 2007;4(Suppl 2):203–12; discussion 212–3.

    Google Scholar 

  29. Wang MY, Lerner J, Lesko J, McGirt MJ. Acute hospital costs after minimally invasive versus open lumbar interbody fusion: data from a US national database with 6106 patients. J Spinal Disord Tech. 2012;25(6):324–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kotani Y, Abumi K, Ito M, Sudo H, Abe Y, Minami A. Mid-term clinical results of minimally invasive decompression and posterolateral fusion with percutaneous pedicle screws versus conventional approach for degenerative spondylolisthesis with spinal stenosis. Eur Spine J. 2012;21(6):1171–7.

    Article  PubMed  Google Scholar 

  31. Rampersaud YR, Gray R, Lewis SJ, Massicotte EM, Fehlings MG. Cost-utility analysis of posterior minimally invasive fusion compared with conventional open fusion for lumbar spondylolisthesis. SAS J. 2011;5:29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Allen RT, Garfin SR. The economics of minimally invasive spine surgery. Spine. 2010;35(26S):S373–82.

    Google Scholar 

  33. Kalanithi PS, Patil CG, Boakye M. National complication rates and disposition after posterior lumbar fusion for acquired spondylolisthesis. Spine. 2009;34:1963–9.

    Article  PubMed  Google Scholar 

  34. Schuster JM, Rechtine G, Norvell DC, et al. The influence of peri-operative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine. 2010;35:S125–37.

    Article  PubMed  Google Scholar 

  35. Khan NA, Quan H, Bugar JM, et al. Association of postoperative complications with hospital costs and length of stay in a tertiary care centre. J Gen Intern Med. 2006;21:177–80.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016 Mar;24(3):416–27.

    Article  PubMed  Google Scholar 

  37. Fayssoux R, Goldfarb NI, Vaccaro AR, Harrop J. Indirect costs associated with surgery for low back pain—a secondary analysis of clinical trial data. Popul Health Manag. 2010;13(1):9–13.

    Article  PubMed  Google Scholar 

  38. Dagenais S, Haldeman S, Polatin PB. It is time for physicians to embrace cost-effectiveness and cost utility analysis research in the treatment of spinal pain. Spine J. 2005;5:357–60.

    Article  PubMed  Google Scholar 

  39. Fritzell P, Hagg O, Jonsson D, et al. Cost-effectiveness of lumbar fusion and nonsurgical treatment for chronic low back pain in the Swedish lumbar spine study: a multicenter, randomized, controlled trial from the Swedish lumbar spine study group. Spine (Phila Pa 1976). 2004;29:421–34.

    Article  Google Scholar 

  40. Fritzell P, Hagg O, Wessberg P, et al. Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine. 2001;26:2521–32.

    Article  CAS  PubMed  Google Scholar 

  41. Grieve R, Grishchenko M, Cairns J. SF-6D versus EQ-5D: reasons for differences in utility scores and impact on reported cost-utility. Eur J Health Econ. 2009;10:15–23.

    Article  PubMed  Google Scholar 

  42. Prieto L, Sacristan JA. Problems and solutions in calculating quality-adjusted life years (QALYs). Health Qual Life Outcomes. 2003;1:80.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ganiats TG, Browner DK, Kaplan RM. Comparison of two methods of calculating quality-adjusted life years. Qual Life Res. 1996;5:162–4.

    Article  CAS  PubMed  Google Scholar 

  44. Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300:230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hawthorne G, Densley K, Pallant JF, Mortimer D, Segal L. Deriving utility scores from the SF-36 health instrument using Rasch analysis. Qual Life Res. 2008;17:1183–93.

    Article  PubMed  Google Scholar 

  46. Jansson KA, Nemeth G, Granath F, Jonsson B, Blomqvist P. Health-related quality of life (EQ-5D) before and one year after surgery for lumbar spinal stenosis. J Bone Joint Surg Br. 2009;91:210–6.

    Article  PubMed  Google Scholar 

  47. Walters SJ, Brazier JE. What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health Qual Life Outcomes. 2003;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McDonough CM, Grove MR, Tosteson TD, Lurie JD, Hilibrand AS, Tosteson AN. Comparison of EQ-5D, HUI, and SF-36-derivated societal health status values among spine patient outcomes research trial (SPORT) participants. Qual Life Res. 2005;14:1321–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tosteson AN, Lurie JD, Tosteson TD, Skinner JS, Herkowitz H, Albert T, Boden SD, Bridwell K, Longley M, Andersson GB, Blood EA, Grove MR, Weinstein JN. Surgical treatment of spinal stenosis with and without degenerative spondylolisthesis: cost-effectiveness after 2 years. Ann Intern Med. 2008;149:845–53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tso P, Walker K, Mahomed N, Coyte PC, Rampersaud YR. Comparison of lifetime incremental cost: utility ratios of surgery relative to failed medical management for the treatment of hip, knee and spine osteoarthritis modelled using 2-year postsurgical values. Can J Surg. 2012;55(3):181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rouben D, Casnellie M, Ferguson M. Long-term durability of minimally invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. J Spinal Disord Tech. 2011;24(5):288–96.

    Article  PubMed  Google Scholar 

  52. Harris SA, Rampersaud YR. Minimally invasive surgery lumbar fusion for low-grade isthmic and degenerative spondylolisthesis: 2- to 5-year follow-up. Can J Surg. 2012;55(Suppl):S45.

    Google Scholar 

  53. Laupacis A, Feeny D, Detsky AS, et al. How attractive does a new technology have to be to warrant adoption and utilization? Tentative guidelines for using clinical and economic evaluations. CMAJ. 1992;146:473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Laupacis A, Feeny D, Detsky AS, et al. Tentative guidelines for using clinical and economic evaluations revisited. CMAJ. 1993;148:927–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldstein CL, Phillips FM, Rampersaud YR. Comparative effectiveness and economic evaluations of open versus minimally invasive posterior or transforaminal lumbar interbody fusion: a systematic review. Spine. 2016;41(Suppl 8):S74–89.

    PubMed  Google Scholar 

  56. Phan K, Hogan JA, Mobbs RJ. Cost-utility of minimally invasive versus open transforaminal lumbar interbody fusion: systematic review and economic evaluation. Eur Spine J. 2015;24:2503–13.

    Article  PubMed  Google Scholar 

  57. Karikari IO, Issacs RE. Minimally invasive transforaminal lumbar interbody fusion. Spine. 2010;35(26S):S294–301.

    Article  PubMed  Google Scholar 

  58. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L. Minimally invasive surgery: lateral approach interbody fusion. Spine. 2010;35(26S):S302–11.

    Article  PubMed  Google Scholar 

  59. Wu RH, Fraser JF, Hartl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine. 2010;35(26):2273–81.

    Article  PubMed  Google Scholar 

  60. Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg. 2011;54(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bijen CB, Vermeulen KM, Mourits MJ, et al. Costs and effects of abdominal versus laparoscopic hysterectomy: systematic review of controlled trials. PLoS One. 2009;4:e7340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pelton MA, Phillips FM, Singh K. Comparison of peri-operative costs and outcomes in patients with and without workers’ compensation claims treated with MIS or open TLIF. Spine. 2012;37(22):1914–9.

    Article  PubMed  Google Scholar 

  63. Gandhoke GS, et al. A cost-effectiveness comparison between open transforaminal and minimally invasive lateral lumbar interbody fusions using the incremental cost-effectiveness ratio at 2-year follow-up. Neurosurgery. 2016;78:585–95.

    Article  PubMed  Google Scholar 

  64. Vertuani S, et al. A cost-effectiveness analysis of minimally invasive versus open surgery techniques for lumbar spinal fusion in Italy and the United Kingdom. Value Health. 2015;18:810–6.

    Article  PubMed  Google Scholar 

  65. Maillard N, et al. A cost-minimization analysis in minimally invasive spine surgery using a national cost scale method. Int J Surg. 2015;15:68–73.

    Article  PubMed  Google Scholar 

  66. Lucio JC, et al. Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy. 2012;5:65–74.

    PubMed  PubMed Central  Google Scholar 

  67. Parker SL, et al. Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg. 2014;82:230–8.

    Article  PubMed  Google Scholar 

  68. Singh K, et al. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J. 2014;14:1694–701.

    Article  PubMed  Google Scholar 

  69. Sulaiman WAR, Singh M. Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis grades 1–2: patient-reported clinical outcomes and cost-utility analysis. Ochsner J. 2014;14:32–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Raja Rampersaud .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    Which of the following would be considered a cost-minimization study?

    1. (a)

      A study comparing the costs associated with two different interventions.

    2. (b)

      A study comparing the costs associated with two different interventions, in whom the clinical outcomes have been consistently demonstrated to be different.

    3. (c)

      A study comparing the costs associated with two different interventions, in whom the clinical outcomes have been consistently demonstrated to be the same.

    4. (d)

      A study comparing two different interventions, which takes into account both costs and clinical effectiveness.

  2. 2.

    Which of the following scenarios would be most appropriate for a CEA?

    1. (a)

      Intervention A is more costly and more effective than intervention B.

    2. (b)

      Intervention A is more costly and less effective than intervention B.

    3. (c)

      Intervention A is less costly and more effective than intervention B.

    4. (d)

      Intervention A is more costly than intervention B, and the outcomes have been demonstrated to be equivalent.

  3. 3.

    Which of the following is an example of an indirect cost associated with an intervention?

    1. (a)

      In-hospital, transfusion-related costs

    2. (b)

      The lost work days incurred by the spouse of a patient, in order to care for that individual, post-discharge.

    3. (c)

      The cost of outpatient rehabilitation, post-discharge.

    4. (d)

      The costs related to treating a postoperative pulmonary embolus.

  4. 4.

    True or false: Generally, implant-related costs are greater in MISS compared to open spine surgery.

  5. 5.

    True or false: There exists an abundance of scholarship that has carefully studied the indirect costs of spinal surgery, both MIS and open.

Answers

  1. 1.

    c

  2. 2.

    a

  3. 3.

    b

  4. 4.

    True

  5. 5.

    False

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravinsky, R.A., Rampersaud, Y.R. (2019). Economics of Minimally Invasive Spine Surgery. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics