Skip to main content

Minimally Disruptive Lateral Transpsoas Approach for Thoracolumbar Anterior Interbody Fusion

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

It has been 15 years since the commercial introduction of the lateral transpsoas interbody fusion procedure, utilizing a specialized retractor system and dedicated intervertebral implants paired with, most importantly, real-time surgeon-directed neuromonitoring integrated into instrumentation to allow for identification and avoidance of the nerves of the lumbar plexus. Since then, hundreds of thousands of lateral interbody fusions have been performed globally for an increasingly complex set of pathologies, with incremental technological innovation being introduced regularly. This mini-open approach can be successfully used in the treatment of thoracic disc herniations and advanced coronal and sagittal plane deformities, in the treatment of spinal trauma and tumors, as well as in the more “routine” and common short-segment degenerative lumbar spinal disease. However, successful adoption and use of this detail-oriented technique requires knowledge and understanding of the regional anatomy, careful review of and incorporation of axial magnetic resonance imaging findings into surgical decision-making, adherence to the canonical surgical technique, and adherence to neuromonitoring feedback. This chapter will cover the background, surgical technique, and best practices of the lateral transpsoas approach as they are currently understood, based on a vast amount of preclinical and clinical evidence as well as collective surgical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion: description of the procedure, results and complications. Spine J. 2002;2:216–23.

    Article  PubMed  Google Scholar 

  2. Baker JK, Reardon PR, Reardon MJ, et al. Vascular injury in anterior lumbar surgery. Spine. 1993;18:2227–30.

    Article  CAS  PubMed  Google Scholar 

  3. Mroz TE, Wang JC, Hashimoto R, et al. Complications related to osteobiologics use in spine surgery: a systematic review. Spine. 2010;35:S86–104.

    Article  PubMed  Google Scholar 

  4. Rajaraman V, Vingan R, Roth P, et al. Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg. 1999;91:60–4.

    CAS  PubMed  Google Scholar 

  5. Scaduto AA, Gamradt SC, Yu WD, et al. Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach. J Spinal Disord Tech. 2003;16:502–7.

    Article  PubMed  Google Scholar 

  6. Faciszewski T, Winter RB, Lonstein JE, et al. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20:1592–9.

    Article  CAS  PubMed  Google Scholar 

  7. Villavicencio AT, Burneikiene S, Bulsara KR, et al. Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech. 2006;19:92–7.

    Article  PubMed  Google Scholar 

  8. Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine. 2006;4:304–9.

    Article  PubMed  Google Scholar 

  9. Potter BK, Kuklo TR, Lenke LG. Radiographic outcomes of anterior spinal fusion versus posterior spinal fusion with thoracic pedicle screws for treatment of Lenke type I adolescent idiopathic scoliosis curves. Spine. 2005;30:1859–66.

    Article  PubMed  Google Scholar 

  10. Rihn JA, Winegar CD, Donaldson WF 3rd, et al. Recurrent atlantoaxial instability due to fracture of the posterior C1 ring: a late finding following posterior C1-C2 fusion using the Halifax clamp. J Surg Orthop Adv. 2009;18:45–50.

    PubMed  Google Scholar 

  11. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: histologic and histochemical analyses in humans. Spine. 1994;19:2598–602.

    Article  CAS  PubMed  Google Scholar 

  12. Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine. 2010;35:S281–6.

    Article  PubMed  Google Scholar 

  13. Kim CW, Siemionow K, Anderson DG, et al. The current state of minimally invasive spine surgery. J Bone Joint Surg Am. 2011;93:582–96.

    PubMed  Google Scholar 

  14. Mcafee PC, Phillips FM, Andersson G, et al. Minimally invasive spine surgery. Spine. 2010;35:S271–3.

    Article  PubMed  Google Scholar 

  15. Mcafee PC, Regan JR, Zdeblick T, et al. The incidence of complications in endoscopic anterior thoracolumbar spinal reconstructive surgery. A prospective multicenter study comprising the first 100 consecutive cases. Spine. 1995;20:1624–32.

    Article  CAS  PubMed  Google Scholar 

  16. Khoo LT, Beisse R, Potulski M. Thoracoscopic-assisted treatment of thoracic and lumbar fractures: a series of 371 consecutive cases. Neurosurgery. 2002;51:S104–17.

    PubMed  Google Scholar 

  17. Cunningham BW, Kotani Y, Mcnulty PS, et al. Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histologic analysis in a sheep model. Spine. 1998;23:1333–40.

    Article  CAS  PubMed  Google Scholar 

  18. Hertlein H, Hartl WH, Dienemann H, et al. Thoracoscopic repair of thoracic spine trauma. Eur Spine J. 1995;4:302–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SJ, Sohn MJ, Ryoo JY, et al. Clinical analysis of video-assisted thoracoscopic spinal surgery in the thoracic or thoracolumbar spinal pathologies. J Korean Neurosurg Soc. 2007;42:293–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bergey DL, Villavicencio AT, Goldstein T, et al. Endoscopic lateral transpsoas approach to the lumbar spine. Spine. 2004;29:1681–8.

    Article  PubMed  Google Scholar 

  21. Ozgur BM, Aryan HE, Pimenta L, et al. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.

    Article  PubMed  Google Scholar 

  22. Acosta FL, Liu J, Slimack N, et al. Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine. 2011;15:92–6.

    Article  PubMed  Google Scholar 

  23. Voyadzis JM, Anaizi AN. Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech. 2013;26:98–106.

    Article  PubMed  Google Scholar 

  24. Pimenta L, Turner AW, Dooley ZA, et al. Biomechanics of lateral interbody spacers: going wider for going stiffer. Sci World J. 2012;2012:381814.

    Article  Google Scholar 

  25. Uribe JS. Neural anatomy, neuromonitoring and related complications in extreme lateral interbody fusion: video lecture. Eur Spine J. 2015;24(Suppl 3):445–6.

    Article  PubMed  Google Scholar 

  26. Uribe JS, Arredondo N, Dakwar E, et al. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13:260–6.

    Article  PubMed  Google Scholar 

  27. Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14:31–7.

    Article  PubMed  Google Scholar 

  28. Uribe JS, Isaacs RE, Youssef JA, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24(Suppl 3):378–85.

    Article  PubMed  Google Scholar 

  29. Elowitz EH. Central and foraminal indirect decompression in MIS lateral interbody fusion (XLIF): video lecture. Eur Spine J. 2015;24(Suppl 3):449–50.

    Article  PubMed  Google Scholar 

  30. Elowitz EH, Yanni DS, Chwajol M, et al. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54:201–6.

    Article  CAS  PubMed  Google Scholar 

  31. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36:26–32.

    Article  PubMed  Google Scholar 

  32. Uribe JS, Deukmedjian AR. Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J. 2015;24(Suppl 3):386–96.

    Article  PubMed  Google Scholar 

  33. Pimenta L, Diaz RC, Guerrero LG. Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine. 2006;5:556–61.

    Article  PubMed  Google Scholar 

  34. Rodgers WB, Gerber EJ, Rodgers JA. Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with beta-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg. 2012;6:24–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lucio JC, Van Conia RB, Deluzio KJ, et al. Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy. 2012;5:65–74.

    PubMed  PubMed Central  Google Scholar 

  36. Smith WD, Christian G, Serrano S, et al. A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci. 2012;19:673–80.

    Article  PubMed  Google Scholar 

  37. Berjano P, Cecchinato R, Sinigaglia A, et al. Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J. 2015;24(Suppl 3):433–8.

    Article  PubMed  Google Scholar 

  38. Berjano P, Damilano M, Ismael M, et al. Anterior column realignment (ACR) technique for correction of sagittal imbalance. Eur Spine J. 2015;24(Suppl 3):451–3.

    Article  PubMed  Google Scholar 

  39. Berjano P, Garbossa D, Damilano M, et al. Transthoracic lateral retropleural minimally invasive microdiscectomy for T9-T10 disc herniation. Eur Spine J. 2014;23:1376–8.

    Article  PubMed  Google Scholar 

  40. Smith WD, Berjano P. Minimally invasive two-column correction of T10-L5 three-dimensional spinal deformity. Eur Spine J. 2015;24(Suppl 3):454–5.

    Article  PubMed  Google Scholar 

  41. Turner JD, Akbarnia BA, Eastlack RK, et al. Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J. 2015;24(Suppl 3):427–32.

    Article  PubMed  Google Scholar 

  42. Uribe JS, Smith WD, Pimenta L, et al. Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine. 2012;16:264–79.

    Article  PubMed  Google Scholar 

  43. Arnold PM, Anderson KK, Mcguire RA Jr. The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int. 2012;3:S198–215.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lehmen JA, Gerber EJ. MIS lateral spine surgery: a systematic literature review of complications, outcomes, and economics. Eur Spine J. 2015;24(Suppl 3):287–313.

    Article  PubMed  Google Scholar 

  45. Uribe JS, Myhre SL, Youssef JA. Preservation or restoration of segmental and regional spinal lordosis using minimally invasive interbody fusion techniques in degenerative lumbar conditions: a literature review. Spine. 2016;41(Suppl 8):S50–8.

    PubMed  Google Scholar 

  46. Marchi L, Oliveira L, Amaral R, et al. Lateral interbody fusion for treatment of discogenic low back pain: minimally invasive surgical techniques. Adv Orthop. 2012;2012:282068.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ozgur BM, Agarwal V, Nail E, et al. Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J. 2010;4:41–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ahmadian A, Verma S, Mundis GM Jr, et al. Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4–L5 spondylolisthesis: clinical outcomes. J Neurosurg Spine. 2013;19:314–20.

    PubMed  Google Scholar 

  49. Isaacs RE, Sembrano JN, Tohmeh AG, et al. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part II: radiographic findings. Spine. 2016;41(Suppl 8):S133–44.

    PubMed  Google Scholar 

  50. Khajavi K, Shen A, Hutchison A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J. 2015;24(Suppl 3):314–21.

    Article  PubMed  Google Scholar 

  51. Marchi L, Abdala N, Oliveira L, et al. Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci World J. 2012;2012:456346.

    Article  Google Scholar 

  52. Rodgers WB, Lehmen JA, Gerber EJ, et al. Grade 2 spondylolisthesis at L4–L5 treated by XLIF: safety and midterm results in the “worst case scenario”. Sci World J. 2012;2012:356712.

    Article  Google Scholar 

  53. Sembrano JN, Tohmeh A, Isaacs R, et al. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part I: clinical findings. Spine. 2016;41(Suppl 8):S123–32.

    PubMed  Google Scholar 

  54. Amin BY, Mummaneni PV, Ibrahim T, et al. Four-level minimally invasive lateral interbody fusion for treatment of degenerative scoliosis. Neurosurg Focus. 2013;35:Video 10.

    Article  PubMed  Google Scholar 

  55. Berjano P, Lamartina C. Far lateral approaches (XLIFLATERAL TRANS PSOAS FUSION) in adult scoliosis. Eur Spine J. 2013;22(Suppl 2):S242–53.

    Article  PubMed  Google Scholar 

  56. Blizzard DJ, Gallizzi MA, Sheets C, et al. Sagittal balance correction in lateral interbody fusion for degenerative scoliosis. Int J Spine Surg. 2016;10:29.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Caputo AM, Michael KW, Chapman TM, et al. Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci. 2013;20:1558–63.

    Article  PubMed  Google Scholar 

  58. Phillips FM, Isaacs RE, Rodgers WB, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38:1853–61.

    Article  PubMed  Google Scholar 

  59. Khajavi K, Shen A, Lagina M, et al. Comparison of clinical outcomes following minimally invasive lateral interbody fusion stratified by preoperative diagnosis. Eur Spine J. 2015;24(Suppl 3):322–30.

    Article  PubMed  Google Scholar 

  60. Palejwala SK, Sheen WA, Walter CM, et al. Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: review of the literature and report of three cases. Clin Neurol Neurosurg. 2014;124:90–6.

    Article  PubMed  Google Scholar 

  61. Smith WD, Youssef JA, Christian G, et al. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5–6. J Spinal Disord Tech. 2012;25:285–91.

    Article  PubMed  Google Scholar 

  62. Rasanen P, Ohman J, Sintonen H, et al. Cost-utility analysis of routine neurosurgical spinal surgery. J Neurosurg Spine. 2006;5:204–9.

    Article  PubMed  Google Scholar 

  63. Menezes CM, Mota de Andrade L, Pereira da Silva Herrero CF, Defino HL, Ferreira MA, Rodgers WB, Nogueira-Barbosa MH. Diffusion-weighted magnetic resonance (DW-MR) neurography of the lumbar plexus in the preoperative planning of lateral access lumbar surgery. Eur Spine J. 2015;24:817–26.

    Article  PubMed  Google Scholar 

  64. Rodgers EJ, Rodgers WB, Lateral Transpsoas. Retractor technology. In: Wang MY, Sama A, Uribe JS, editors. Lateral access minimally invasive spine surgery. Switzerland: Springer International Publishing; 2017.

    Google Scholar 

  65. Cheng I, Acosta F, Chang K, et al. Point-counterpoint: the use of neuromonitoring in lateral transpsoas surgery. Spine. 2016;41(Suppl 8):S145–51.

    PubMed  Google Scholar 

  66. Cheng I, Briseno MR, Arrigo RT, et al. Outcomes of two different techniques using the lateral approach for lumbar interbody arthrodesis. Global Spine J. 2015;5:308–14.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hardenbrook MA, Miller LE, Block JE. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion. Med Devices (Auckl). 2013;6:91–5.

    Google Scholar 

  68. Peterson MD, Youssef JA. Extreme lateral interbody fusion (XLIF): lumbar surgical technique. In: Goodrich JA, Volcan IJ, editors. Extreme lateral interbody fusion (XLIF). St. Louis: Quality Medical Publishers; 2013. p. 159–78.

    Google Scholar 

  69. Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35:S368–74.

    Article  PubMed  Google Scholar 

  70. Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14:290–5.

    Article  PubMed  Google Scholar 

  71. Buvanendran A, Thillainathan V. Preoperative and postoperative anesthetic and analgesic techniques for minimally invasive surgery of the spine. Spine. 2010;35:S274–80.

    Article  PubMed  Google Scholar 

  72. Dakwar E, Rifkin SI, Volcan IJ, et al. Rhabdomyolysis and acute renal failure following minimally invasive spine surgery: report of 5 cases. J Neurosurg Spine. 2011;14:785–8.

    Article  PubMed  Google Scholar 

  73. Dakwar E, Le TV, Baaj AA, et al. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31:E18.

    Article  PubMed  Google Scholar 

  74. Calancie BM, Madsen P, Lebwhol N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19:2780–6.

    Article  CAS  PubMed  Google Scholar 

  75. Moro T, Kikuchi S, Konno S, et al. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine. 2003;28:423–8.

    PubMed  Google Scholar 

  76. Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011;18:149–51.

    Article  PubMed  Google Scholar 

  77. Yen CP, Uribe JS. Procedural checklist for retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine. 2016;41(Suppl 8):S152–8.

    PubMed  Google Scholar 

  78. Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive ALIF: analysis of XLIF by computed tomography. SAS J. 2010;4:63–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duran S, Cavusoglu M, Hatipoglu HG, et al. Association between measures of vertebral endplate morphology and lumbar intervertebral disc degeneration. Can Assoc Radiol J. 2017;68:210–6.

    Article  PubMed  Google Scholar 

  80. He X. The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine. 2012;79:1068–73.

    Article  Google Scholar 

  81. Lang G, Navarro-Ramirez R, Gandevia L, Hussain I, et al. Elimination of subsidence with 26-mm-wide cages in extreme lateral interbody fusion. World Neurosurg. 2017;104:644–52.

    Article  PubMed  Google Scholar 

  82. Acosta FL Jr, Drazin D, Liu JC. Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery. 2013;73:ons48–51; discussion ons52.

    Article  PubMed  Google Scholar 

  83. Epstein NE. Extreme lateral lumbar interbody fusion: do the cons outweigh the pros? Surg Neurol Int. 2016;7:S692–700.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: a review of safety concerns. Surg Neurol Int. 2016;7:S652–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Epstein NE. Learning curves for minimally invasive spine surgeries: are they worth it? Surg Neurol Int. 2017;8:61.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: a review. Surg Neurol Int. 2016;7:S83–95.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Epstein NE. More nerve root injuries occur with minimally invasive lumbar surgery: let’s tell someone. Surg Neurol Int. 2016;7:S96–S101.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Epstein NE. Non-neurological major complications of extreme lateral and related lumbar interbody fusion techniques. Surg Neurol Int. 2016;7:S656–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kwon B, Kim DH. Lateral lumbar interbody fusion: indications, outcomes, and complications. J Am Acad Orthop Surg. 2016;24:96–105.

    Article  PubMed  Google Scholar 

  90. Patel AA. Lateral lumbar interbody fusion: a better, worse, and similar approach to lumbar arthrodesis. J Am Acad Orthop Surg. 2016;24:57–9.

    Article  PubMed  Google Scholar 

  91. Ahmadian A, Abel N, Uribe JS. Functional recovery of severe obturator and femoral nerve injuries after lateral retroperitoneal transpsoas surgery. J Neurosurg Spine. 2013;18:409–14.

    Article  PubMed  Google Scholar 

  92. Ahmadian A, Deukmedjian AR, Abel N, et al. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine. 2013;18:289–97.

    Article  PubMed  Google Scholar 

  93. Woods K, Billys J, Hines R. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;4:545–53.

    Article  Google Scholar 

  94. Cummock MD, Vanni S, et al. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;14:11–8.

    Article  Google Scholar 

  95. Davis T, Hynes RA, et al. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine. 2014;16:785–93.

    Article  Google Scholar 

  96. Molinares D, Davis T, et al. Is the lateral jack-knife position responsible for cases of transient neurapraxia? J Neurosurg Spine. 2016;24:189–96.

    Article  PubMed  Google Scholar 

  97. Wolfla C, Maiman D, Coufal FJ, Wallace JR. Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages. J Neurosurg. 2002;96:50–5.

    Article  PubMed  Google Scholar 

  98. Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine. 2017;42:55–62.

    Article  PubMed  Google Scholar 

  99. Kanno K, Seiji O, Sumihisa O, et al. Miniopen oblique lateral L5-S1 interbody fusion: a report of 2 cases. Case Rep Orthop. 2014;2014:603531. https://doi.org/10.1155/2014/603531.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Silvestre C, Mac-Thiong JM, et al. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wakita H, Shiga Y, Ohtori S, et al. Less invasive corrective surgery using oblique lateral interbody fusion (OLIF) including L5-S1 fusion for severe lumbar kyphoscoliosis due to L4 compression fracture in a patient with Parkinson’s disease: a case report. BMC Res Notes. 2015;8:126.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mcafee PC, Regan JJ, Geis WP, et al. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine. 1998;23:1476–84.

    Article  CAS  PubMed  Google Scholar 

  103. Deukmedjian AR, Dakwar E, Ahmadian A, et al. Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J. 2012;2012:789698.

    Article  Google Scholar 

  104. Pimenta L, Fortti F, Oliveira L, et al. Anterior column realignment following lateral interbody fusion for sagittal deformity correction. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S29–33.

    Article  PubMed  Google Scholar 

  105. Saigal R, Mundis GM Jr, Eastlack R, et al. Anterior column realignment (ACR) in adult sagittal deformity correction: technique and review of the literature. Spine. 2016;41(Suppl 8):S66–73.

    PubMed  Google Scholar 

  106. Uribe JS, Harris JE, Beckman JM, et al. Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement. Eur Spine J. 2015;24(Suppl 3):420–6.

    Article  PubMed  Google Scholar 

  107. Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE, et al. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. J Neurosurg Spine. 2014;20:387–95.

    Article  PubMed  Google Scholar 

  108. Rodgers CR, Rodgers WB. The role of MIS spine surgery in global health: a development critique. In: Phillips FM, Lieberman I, Polly D, Wang MY, editors. Minimally invasive spine surgery: surgical techniques and disease management. 2nd ed. New York: Springer; in press.

    Google Scholar 

  109. Wang Q, Xu Y, Chen R, et al. A novel indication for a method in the treatment of lumbar tuberculosis through minimally invasive extreme lateral interbody fusion (XLIF) in combination with percutaneous pedicle screws fixation in an elderly patient a case report. Medicine (Baltimore). 2016;95:e5303.

    Article  Google Scholar 

  110. Mwachaka PM, Ranketi SS, Nchafatsi OG, et al. Spinal tuberculosis among human immunodeficiency virus negative patients in a Kenyan tertiary hospital: a 5 year synopsis. Spine J. 2011;11:265–9.

    Article  PubMed  Google Scholar 

  111. Ravindra KG, Dilip S. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34:440–54.

    Article  Google Scholar 

  112. Mehta JS, Bhojraj SY. Tuberculosis of the thoracic spine. A classification based on the selection of surgical strategies. J Bone Joint Surg Br. 2001;83:859–63.

    Article  CAS  PubMed  Google Scholar 

  113. Oguz E, Sehirlioglu A, Altinmakas M, et al. A new classification and guide for surgical treatment of spinal tuberculosis. Int Orthop. 2008;32:127–33.

    Article  CAS  PubMed  Google Scholar 

  114. Rajasekaran S. The natural history of post-tubercular kyphosis in children: radiological signs which predict late increase in deformity. J Bone Joint Surg Br. 2001;83:954–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Rodgers .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    What are the six key steps in making lateral access transpsoas procedures safe and reproducible?

  2. 2.

    Describe the absolute and relative contraindications to lateral access spinal surgery.

  3. 3.

    What anatomic structures should the operative surgeon specifically identify on the preoperative axial MRI or CT scan at L4–L5? L3–L4? L2–L3?

  4. 4.

    Do current neuromonitoring platforms detect the location of sensory nerves?

  5. 5.

    Describe the suggested technique for “mapping” the lumbar plexus utilizing preoperative radiographic studies, intraoperative tactile exploration, and visual and auditory responses from the neuromonitor.

  6. 6.

    What is the most important independent predictor of postoperative motor deficits in MIS lateral spinal surgery?

  7. 7.

    What is the key difference between the standard lateral transpsoas technique and the “shallow-docking” lateral transpsoas approach? (Mark one)

    1. (a)

      A different approach trajectory

    2. (b)

      The use of expandable implants

    3. (c)

      The lack of requirement for neuromonitoring

    4. (d)

      The need for an access surgeon

  8. 8.

    What techniques are used to avoid endplate violation and subsidence in lateral transpsoas interbody fusion?

    1. (a)

      Properly orient the patient in a lateral position so the working corridor is perpendicular to the floor.

    2. (b)

      Use slides when delivering the implant.

    3. (c)

      Use angled instrumentation at L4–L5 with a high crest.

    4. (d)

      Use physiologic, not supraphysiologic, sizing of implants, especially in the height (cranial-caudal) dimension.

    5. (e)

      All of the above

  9. 9.

    When evaluating the presence of paralytics in the patient prior to performing a lateral transpsoas interbody fusion, a twitch test is performed. A successful twitch test involves:

    1. (a)

      A train of four EMG stimulations that maintain at least 75% of the response of the first stimulation at the fourth.

    2. (b)

      A train of four EMG stimulations that maintain complete (>99%) functional responses at all four stimulations.

    3. (c)

      A positive twitch on peripheral stimulation by the anesthesiologist.

    4. (d)

      A series of eight stimulations with at least 50% of the response maintained throughout.

  10. 10.

    Overbreaking the surgical table can lead to: (Mark all that apply)

    1. (a)

      Tensioning of the psoas muscle and lumbar plexus

    2. (b)

      A more difficult access due to the position of the pelvis and ribs

    3. (c)

      Pressure points and the development of rhabdomyolysis

    4. (d)

      Abnormal stimulated EMG findings in the surgical window

    5. (e)

      Changes in TMAP findings

Answers

  1.  1. 
    1. (a)

      Careful patient positioning

    2. (b)

      Gentle retroperitoneal dissection

    3. (c)

      Meticulous psoas passage using an integrated neuromonitoring platform

    4. (d)

      Complete discectomy and fusion site preparation

    5. (e)

      Proper interbody implant sizing and placement

    6. (f)

      Constant awareness of impact of protracted surgical time on neural injury

  2.  2.

    Contraindications evolve with experience. Relative contraindications to the approach include instances where L5-S1 is indicated, where the approach is limited by the position of the iliac crest, and where a level cranial to approximately T4 is indicated, where vascular anatomy and the position of the scapula limit access for the approach. Other relative contraindications include patients with bilateral retroperitoneal scarring (e.g., prior kidney surgery), patients with anomalous vascular anatomy interfering with the lateral approach (as may occur in rotational deformities), and degenerative spondylolisthesis ≥ Grade II where exiting nerve roots are more anterior and limit access. In patients with lumbarized sacra where L5-6 is a functional L4-5 segment, the approach may not be possible due to the likelihood of a more anterior lumbar plexus limiting lateral disc space access. Many, if not all, of these anatomic considerations are easily determined on preoperative imaging studies. Absolute contraindications are best dictated by common sense, but it is the authors’ opinion that L5-S1 should not be addressed with this approach.

  3.  3.

    At all levels, a careful review of the vascular structures near to, or traversing, the operative window is mandatory. In like fashion, the lumbar plexus—if visible—should be evaluated. At higher levels, the location of the kidneys should be determined, while at lower levels anomalous vascular or visceral should be visible. By CT, lateral and ventral osteophytes can be assessed as well.

  4.  4.

    No

  5.  5.

    The key to any surgery is to “uncover” the anatomy, not to “discover” it. As in question 3, a thorough review of the preoperative imaging studies will prepare the surgeon for the location of the peritoneum, the retroperitoneal viscera, and the vascular structures. Upon incision and entry into the retroperitoneal space, the surgeon’s index finger can oftentimes tactilely locate the ilioinguinal, iliohypogastric, and genitofemoral nerves (which are not detected by IONM) and, when approaching from the left side, can palpate the arterial pulse as well. Once the initial dilator has traversed the retroperitoneal space and prior to dilation through the psoas muscle, stimulated EMG should be activated through the dilator and stimulation should be maintained throughout psoas dilation. To begin, use blunt dissection with the index finger and dilator through the fibers of the psoas muscle, slowly advancing the dilator towards the lateral disc and rotating throughout, paying attention to EMG responses and where the response was generated (direction) relative to the dilator. In addition to the directional stimulation of EMG using the dilator, discrete-threshold EMG responses are provided and indicate relative proximity to the dilator. The lower the threshold (in milliamps) required to evoke a response, the closer in proximity the motor nerve is to the stimulating field. Feedback is provided both visually and audibly, with thresholds below 5 mA indicating direct nerve contact, those between 5 mA and 10 mA reporting close proximity, and responses greater than 10 mA indicating a workable distance away from motor nerves. In the authors’ experience, such an approach represents a “mapping” of the individual patient’s local anatomy and mandates the integrated use of the surgeon’s visual, auditory, and tactile senses.

  6.  6.

    Time

  7.  7.

    c

  8.  8.

    e

  9.  9.

    a

  10. 10.

    a, c, e

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chomba, D., Rodgers, W.C., Rodgers, W.B. (2019). Minimally Disruptive Lateral Transpsoas Approach for Thoracolumbar Anterior Interbody Fusion. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics