Skip to main content

Minimally Invasive Transforaminal Lumbar Interbody Fusion

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

The minimally invasive transforaminal lumbar interbody fusion approach is a versatile technique for the surgical treatment of a multitude of degenerative spinal maladies. It represents a robust and durable approach that provides three-column stability and significant pain relief. The TLIF technique involves a complete facetectomy and thereby allows for a more lateral exposure to the disk space obviating neural retraction. This chapter describes the indications and contraindications for the MIS TLIF approach. We describe the detailed technique necessary to successfully accomplish restoration of lordotic curvature. In order to enhance clinical outcomes, pearls and pitfalls pertaining to the approach are addressed. Also, possible surgical complications are herein described, and specific ways to avoid these errors are reported. Lastly, a review of the most current literature related to the MIS TLIF approach provides evidence of the advantages, feasibility, and applications of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen RT, Garfin SR. The economics of minimally invasive spine surgery: the value perspective. Spine (Phila Pa 1976). 2010;35:S375–82.

    Article  Google Scholar 

  2. Fessler RG. Minimally invasive spine surgery. Neurosurgery. 2002;51:Siii–v.

    PubMed  Google Scholar 

  3. Kim CW, Siemionow K, Anderson DG, et al. The current state of minimally invasive spine surgery. Instr Course Lect. 2011;60:353–70.

    PubMed  Google Scholar 

  4. Knight RQ. Minimally invasive spine surgery. Curr Orthop Pract. 2009;20:227–31.

    Article  Google Scholar 

  5. McAfee PC, Phillips FM, Andersson G, et al. Minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35:S271–3.

    Article  Google Scholar 

  6. Ozgur BM, Benzel EC, Garfin S. Minimally invasive spine surgery: a practical guide to anatomy and techniquesed. Dordrecht: Springer; 2009.

    Book  Google Scholar 

  7. Park P, Foley KT. Minimally invasive transforaminal lumbar interbody fusion with reduction of spondylolisthesis: technique and outcomes after a minimum of 2 years’ follow-up. Neurosurg Focus. 2008;25:E16.

    Article  PubMed  Google Scholar 

  8. Figueiredo N, Martins JW, Arruda AA, et al. TLIF—transforaminal lumbar interbody fusion. Arq Neuropsiquiatr. 2004;62:815–20.

    Article  PubMed  Google Scholar 

  9. Hackenberg L, Halm H, Bullmann V, et al. Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J. 2005;14:551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine (Phila Pa 1976). 2004;29:E65–70.

    Article  Google Scholar 

  11. Baaj AA. Handbook of spine surgeryed. New York: Thieme; 2012.

    Google Scholar 

  12. Singh K, Vaccaro A. Treatment of lumbar instability: transforaminal lumbar interbody fusion. Semin Spine Surg. 2005;17:259–66.

    Article  Google Scholar 

  13. Vaccaro A, Bono CM. Minimally invasive spine surgery. Minimally invasive procedures in orthopedic surgery. New York: Informa Healthcare; 2007.

    Book  Google Scholar 

  14. Chaudhary KS, Groff M. Minimally invasive transforaminal lumbar interbody fusion for degenerative spine. Tech Orthop. 2011;26:146–55.

    Article  Google Scholar 

  15. Hoh DJ, Wang MY, Ritland SL. Anatomic features of the paramedian muscle-splitting approaches to the lumbar spine. Neurosurgery. 2010;66:13–24; discussion -5.

    Article  PubMed  Google Scholar 

  16. Lehman RA Jr, Vaccaro AR, Bertagnoli R, et al. Standard and minimally invasive approaches to the spine. Orthop Clin North Am. 2005;36:281–92.

    Article  PubMed  Google Scholar 

  17. Peng CW, Yue WM, Poh SY, et al. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34:1385–9.

    Article  Google Scholar 

  18. Wang JC. Advanced reconstruction spineed. Rosemont: American Academy of Orthopaedic Surgeons; 2011.

    Google Scholar 

  19. Gonzalez AA, Jeyanandarajan D, Hansen C, et al. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6.

    Article  PubMed  Google Scholar 

  20. Wiesel SW. Operative techniques in orthopaedic surgeryed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  21. Blondel B, Adetchessi T, Pech-Gourg G, et al. Minimally invasive transforaminal lumbar interbody fusion through a unilateral approach and percutaneous osteosynthesis. Orthop Traumatol Surg Res. 2011;97:595–601.

    Article  CAS  PubMed  Google Scholar 

  22. Hey HW, Hee HT. Lumbar degenerative spinal deformity: surgical options of PLIF, TLIF and MI-TLIF. Indian J Orthop. 2010;44:159–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lau D, Lee JG, Han SJ, et al. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci. 2011;18:624–7.

    Article  PubMed  Google Scholar 

  24. Neal CJ, Rosner MK. Resident learning curve for minimal-access transforaminal lumbar interbody fusion in a military training program. Neurosurg Focus. 2010;28:E21.

    Article  PubMed  Google Scholar 

  25. Bindal RK, Glaze S, Ognoskie M, et al. Surgeon and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2008;9:570–3.

    Article  PubMed  Google Scholar 

  26. Chen NF, Smith ZA, Stiner E, et al. Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2010;12:40–6.

    Article  PubMed  Google Scholar 

  27. Glassman SD, Howard JM, Sweet A, et al. Complications and concerns with osteobiologics for spine fusion in clinical practice. Spine (Phila Pa 1976). 2010;35:1621–8.

    Article  Google Scholar 

  28. Knox JB, Dai JM 3rd, Orchowski J. Osteolysis in transforaminal lumbar interbody fusion with bone morphogenetic protein-2. Spine (Phila Pa 1976). 2011;36:672–6.

    Article  Google Scholar 

  29. Rihn JA, Makda J, Hong J, et al. The use of RhBMP-2 in single-level transforaminal lumbar interbody fusion: a clinical and radiographic analysis. Eur Spine J. 2009;18:1629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adogwa O, Parker SL, Bydon A, et al. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech. 2011;24:479–84.

    PubMed  Google Scholar 

  31. Brodano GB, Martikos K, Lolli F, et al. Transforaminal lumbar interbody fusion in degenerative disk disease and spondylolisthesis grade I: minimally invasive versus open surgery. J Spinal Disord Tech. 2015;28:E559–64.

    Article  PubMed  Google Scholar 

  32. Goldstein CL, Macwan K, Sundararajan K, et al. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016;24:416–27.

    Article  PubMed  Google Scholar 

  33. Hey HW, Hee HT. Open and minimally invasive transforaminal lumbar interbody fusion: comparison of intermediate results and complications. Asian Spine J. 2015;9:185–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Isaacs RE, Podichetty VK, Santiago P, et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005;3:98–105.

    Article  PubMed  Google Scholar 

  35. Khan NR, Clark AJ, Lee SL, et al. Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery. 2015;77:847–74; discussion 74.

    Article  PubMed  Google Scholar 

  36. Schwender JD, Holly LT, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18. Suppl:S1–6.

    Article  PubMed  Google Scholar 

  37. Shunwu F, Xing Z, Fengdong Z, et al. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976). 2010;35:1615–20.

    Article  Google Scholar 

  38. Singh K, Nandyala SV, Marquez-Lara A, et al. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J. 2014;14:1694–701.

    Article  PubMed  Google Scholar 

  39. Tian NF, Wu YS, Zhang XL, et al. Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence. Eur Spine J. 2013;22:1741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine. 2005;3:218–23.

    Article  PubMed  Google Scholar 

  41. Kim JS, Jung B, Lee SH. Instrumented minimally invasive spinal-transforaminal lumbar interbody fusion (MIS-TLIF); minimum 5-years follow-up with clinical and radiologic outcomes. J Spinal Disord Tech. 2012;31:302–9.

    Google Scholar 

  42. Park Y, Ha JW, Lee YT, et al. Minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis and degenerative spondylosis: 5-year results. Clin Orthop Relat Res. 2014;472:1813–23.

    Article  PubMed  Google Scholar 

  43. Rouben D, Casnellie M, Ferguson M. Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. J Spinal Disord Tech. 2011;24:288–96.

    Article  PubMed  Google Scholar 

  44. Kim CW, Doerr TM, Luna IY, et al. Minimally invasive transforaminal lumbar interbody fusion using expandable technology: a clinical and radiographic analysis of 50 patients. World Neurosurg. 2016;90:228–35.

    Article  PubMed  Google Scholar 

  45. Shen X, Wang L, Zhang H, et al. Radiographic analysis of one-level minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) with unilateral pedicle screw fixation for lumbar degenerative diseases. Clin Spine Surg. 2016;29:E1–8.

    Article  PubMed  Google Scholar 

  46. Villavicencio AT, Burneikiene S, Roeca CM, et al. Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int. 2010;1:12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang MY. Improvement of sagittal balance and lumbar lordosis following less invasive adult spinal deformity surgery with expandable cages and percutaneous instrumentation. J Neurosurg Spine. 2013;18:4–12.

    Article  PubMed  Google Scholar 

  48. Parker SL, Adogwa O, Bydon A, et al. Cost-effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neurosurg. 2012;78:178–84.

    Article  PubMed  Google Scholar 

  49. Beringer WF, Mobasser JP. Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2006;20:E4.

    PubMed  Google Scholar 

  50. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20:E6.

    Article  PubMed  Google Scholar 

  51. Deutsch H, Musacchio MJ Jr. Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Neurosurg Focus. 2006;20:E10.

    Article  PubMed  Google Scholar 

  52. Rosen DS, Ferguson SD, Ogden AT, et al. Obesity and self-reported outcome after minimally invasive lumbar spinal fusion surgery. Neurosurgery. 2008;63:956–60; discussion 60.

    Article  PubMed  Google Scholar 

  53. Tuttle J, Shakir A, Choudhri HF. Paramedian approach for transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Technical note and preliminary report on 47 cases. Neurosurg Focus. 2006;20:E5.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No funds were received in support of this work. No benefits in any form have been or will be received from any commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kern Singh .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    Which of the following is not a clinical indication for MIS TLIF?

    1. (a)

      L4–5 Degenerative disk disease

    2. (b)

      L3–4 Grade I spondylolisthesis

    3. (c)

      L3–4 Recurrent herniated disk

    4. (d)

      L4–5 Grade IV spondylolisthesis

  2. 2.

    Which of the following is true regarding the surgical anatomy for MIS TLIF?

    1. (a)

      The medial border of the anatomic working zone is composed of the traversing nerve root and thecal sac.

    2. (b)

      The musculature of the posterior spine has two layers: superficial and deep.

    3. (c)

      The Wiltse approach utilizes the natural plane between the multifidus and illiocostalis muscles.

    4. (d)

      The attachments of the paraspinal musculature on the contralateral side are not preserved in this approach.

  3. 3.

    Which of the following is not a proposed advantage of MIS TLIF compared to open spinal fusion approaches?

    1. (a)

      Reduced intraoperative blood loss

    2. (b)

      Reduced postoperative pain

    3. (c)

      Reduced operative time

    4. (d)

      Reduced long-term costs

  4. 4.

    Which of the following is true regarding the placement of instrumentation in MIS TLIF?

    1. (a)

      During pedicle screw cannulation, the K-wire should not pass the pedicle-vertebral body border anteriorly.

    2. (b)

      Use of interbody cages and pedicle screw fixation promotes axial load sharing.

    3. (c)

      The interbody cage should not pass the midline upon impaction.

    4. (d)

      Graft enhancers/osteobiologics and local bone graft should not be used concurrently within interbody cage devices.

Answers

  1. 1.

    d

  2. 2.

    a

  3. 3.

    c

  4. 4.

    b

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narain, A.S., Hijji, F.Y., Pelton, M.A., Nandyala, S.V., Marquez-Lara, A., Singh, K. (2019). Minimally Invasive Transforaminal Lumbar Interbody Fusion. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics