Skip to main content

Percutaneous Pedicle Screws

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

Minimally invasive techniques in pedicle screw insertion provide an additional option to a spine surgeon’s armamentarium in dealing with various spine pathologies. It can be applied to practically any surgical setting where conventional open technique is indicated. The most apparent advantage of percutaneous pedicle screw insertion relates to reduced paraspinal muscle damage. Studies have shown that this decreased approach-related morbidity results in decreased operative blood loss, reduced postoperative narcotic use, and greater preservation of trunk extension strength.

Because direct visualization of anatomic landmarks is sacrificed, intraoperative imaging is necessary to facilitate safe pedicle screw placement. Two common methods of percutaneous pedicle screw insertion are discussed in this chapter. The first is with real-time two-dimensional (2-D) fluoroscopic imaging. The second is with three-dimensional (3-D) image-guided navigation which employs virtual images taken with an intraoperative CT scanner. Accuracy rates with either method have been demonstrated to be similar or improved compared to open technique.

The benefit of improved imaging technology is associated with increased radiation exposure risk. This can be minimized by wearing protective garments, observing safe distance from the beam source, and limiting or eliminating unnecessary exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringel F, Stoffel M, Stuer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery. 2006;59(4 Suppl 2):ONS361–6; discussion ONS6–7.

    PubMed  Google Scholar 

  2. Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976). 2005;30(1):123–9.

    Article  Google Scholar 

  3. Raley DA, Mobbs RJ. Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilisation of the thoracic and lumbar spine: accuracy and complication rates. Spine (Phila Pa 1976). 2012;37(12):1092–100.

    Article  Google Scholar 

  4. McGirt MJ, Parker SL, Mummaneni P, Knightly J, Pfortmiller D, Foley K, et al. Is the use of minimally invasive fusion technologies associated with improved outcomes after elective interbody lumbar fusion? Analysis of a nationwide prospective patient-reported outcomes registry. Spine J. 2017;17(7):922–32.

    Article  Google Scholar 

  5. Lehmann W, Ushmaev A, Ruecker A, Nuechtern J, Grossterlinden L, Begemann PG, et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J. 2008;17(6):857–63.

    Article  CAS  Google Scholar 

  6. Bresnahan LE, Smith JS, Ogden AT, Quinn S, Cybulski GR, Simonian N, et al. Assessment of paraspinal muscle cross-sectional area after lumbar decompression: minimally invasive versus open approaches. Clin Spine Surg. 2017;30(3):E162–E8.

    Article  Google Scholar 

  7. Ntilikina Y, Bahlau D, Garnon J, Schuller S, Walter A, Schaeffer M, et al. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal. J Neurosurg Spine. 2017;09:1–7.

    Google Scholar 

  8. Knox JB, Dai JM 3rd, Orchowski JR. Superior segment facet joint violation and cortical violation after minimally invasive pedicle screw placement. Spine J. 2011;11(3):213–7.

    Article  Google Scholar 

  9. Park Y, Ha JW, Lee YT, Sung NY. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.

    Article  Google Scholar 

  10. Patel RD, Graziano GP, Vanderhave KL, Patel AA, Gerling MC. Facet violation with the placement of percutaneous pedicle screws. Spine (Phila Pa 1976). 2011;36(26):E1749–52.

    Article  Google Scholar 

  11. Yson SC, Sembrano JN, Sanders PC, Santos ER, Ledonio CG, Polly DW Jr. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine (Phila Pa 1976). 2013;38(4):E251–8.

    Article  Google Scholar 

  12. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res. 1984;189:125–41.

    Google Scholar 

  13. Lowery GL, Kulkarni SS. Posterior percutaneous spine instrumentation. Eur Spine J. 2000;9(Suppl 1):S126–30.

    Article  Google Scholar 

  14. Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):E10.

    Article  CAS  Google Scholar 

  15. Powers CJ, Podichetty VK, Isaacs RE. Placement of percutaneous pedicle screws without imaging guidance. Neurosurg Focus. 2006;20(3):E3.

    Article  Google Scholar 

  16. Schizas C, Michel J, Kosmopoulos V, Theumann N. Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J. 2007;16(5):613–7.

    Article  Google Scholar 

  17. Wood MJ, Mannion RJ. Improving accuracy and reducing radiation exposure in minimally invasive lumbar interbody fusion. J Neurosurg Spine. 2010;12(5):533–9.

    Article  Google Scholar 

  18. Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(3 Suppl):324–9.

    PubMed  Google Scholar 

  19. Nakashima H, Sato K, Ando T, Inoh H, Nakamura H. Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery. J Spinal Disord Tech. 2009;22(7):468–72.

    Article  Google Scholar 

  20. Park P, Foley KT, Cowan JA, Marca FL. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results. Surg Neurol Int. 2010;1:44.

    Article  Google Scholar 

  21. Mroz TE, Abdullah KG, Steinmetz MP, Klineberg EO, Lieberman IH. Radiation exposure to the surgeon during percutaneous pedicle screw placement. J Spinal Disord Tech. 2011;24(4):264–7.

    Article  Google Scholar 

  22. Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P. Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976). 1999;24(10):975–82; discussion 83.

    Article  CAS  Google Scholar 

  23. von Jako R, Finn MA, Yonemura KS, Araghi A, Khoo LT, Carrino JA, et al. Minimally invasive percutaneous transpedicular screw fixation: increased accuracy and reduced radiation exposure by means of a novel electromagnetic navigation system. Acta Neurochir. 2011;153(3):589–96.

    Article  Google Scholar 

  24. Idler C, Rolfe KW, Gorek JE. Accuracy of percutaneous lumbar pedicle screw placement using the oblique or “owl’s-eye” view and novel guidance technology. J Neurosurg Spine. 2010;13(4):509–15.

    Article  Google Scholar 

  25. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.

    Article  Google Scholar 

  26. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976). 2001;26(14):1511–5.

    Article  CAS  Google Scholar 

  27. Wiesner L, Kothe R, Ruther W. Anatomic evaluation of two different techniques for the percutaneous insertion of pedicle screws in the lumbar spine. Spine (Phila Pa 1976). 1999;24(15):1599–603.

    Article  CAS  Google Scholar 

  28. Harris EB, Massey P, Lawrence J, Rihn J, Vaccaro A, Anderson DG. Percutaneous techniques for minimally invasive posterior lumbar fusion. Neurosurg Focus. 2008;25(2):E12.

    Article  Google Scholar 

  29. Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18(6):741–9.

    Article  Google Scholar 

  30. Hubbe U, Kogias E, Vougioukas VI. Image guided percutaneous trans-pedicular screw fixation of the thoracic spine. A clinical evaluation. Acta Neurochir (Wien). 2009;151(5):545–9; discussion 9.

    Article  Google Scholar 

  31. Kakarla UK, Little AS, Chang SW, Sonntag VK, Theodore N. Placement of percutaneous thoracic pedicle screws using neuronavigation. World Neurosurg. 2010;74(6):606–10.

    Article  Google Scholar 

  32. Larson AN, Santos ER, Polly DW Jr, Ledonio CG, Sembrano JN, Mielke CH, et al. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine (Phila Pa 1976). 2012;37(3):E188–94.

    Article  Google Scholar 

  33. Kotani Y, Abumi K, Ito M, Takahata M, Sudo H, Ohshima S, et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976). 2007;32(14):1543–50.

    Article  Google Scholar 

  34. Nottmeier EW, Seemer W, Young PM. Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort. J Neurosurg Spine. 2009;10(1):33–9.

    Article  Google Scholar 

  35. Bledsoe JM, Fenton D, Fogelson JL, Nottmeier EW. Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance. Spine J. 2009;9(10):817–21.

    Article  Google Scholar 

  36. Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus. 2010;28(3):E11.

    Article  Google Scholar 

  37. Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine (Phila Pa 1976). 2005;30(16):1893–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan N. Sembrano .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

True/False

  1. 1.

    In the process of obtaining true AP and lateral images, it is advisable to rotate (i.e., “rainbow”) the C-arm and leaving the bed parallel to the floor.

  2. 2.

    The use of 3-D imaging navigation potentially reduces surgical team radiation exposure, since the surgical team can step out of the operating room or hide behind lead shields during 3-D image acquisition.

Answers

  1. 1.

    False

  2. 2.

    True

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sembrano, J.N., Yson, S.C., Polly, D.W. (2019). Percutaneous Pedicle Screws. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics