Skip to main content

Lasers

  • Chapter
  • First Online:
  • 972 Accesses

Abstract

Lasers are often portrayed as a “miracle cure” for many painful spinal conditions, and many patients seek “laser surgery” to treat their spine problems. The reality is that in most instances the laser is an alternative tool replacing an equally effective mechanical or electrothermal instrument. Lasers are simply one of many tools at the disposal of spine surgeons to cut, shrink, coagulate, or remove tissue including the bone. In minimally invasive spine surgery, especially endoscopic spine surgery, there is a limited working area for tools and lasers that can effectively treat tissue without obscuring the surgeon’s view. Lasers do have the advantage of being very small and precise tools, thus allowing a truly minimally invasive surgical approach/exposure to limit iatrogenic morbidity. The holmium:yttrium-aluminum-garnet (Hol:YAG) laser is the most commonly used laser in spine surgery. It is delivered through small fiber optics and has different probes with both side-firing and steerable straight-firing capabilities to treat even hard-to-reach areas within the surgical view. The treatment area is very precise, and lasers can be safely used in close proximity to sensitive structures such as nerve roots. The surgeon can see exactly where the laser beam is aimed and focused at prior to turning it on. The probe can even be touching the nerve while aiming the beam away from it. This is compared to drills that could jump/bounce off of the bone and radio-frequency probes that cannot control the direction of their thermal energy. In spine surgery, lasers are most useful for endoscopic lumbar discectomies, foraminal decompression (foraminoplasty), facet nerve ablation, and debulking spinal tumors. Potential complications of lasers include neurologic injury, vertebral osteonecrosis, and aseptic discitis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Townes CH. Optical masers and their possible applications to biology. Biophys J. 1962;2(2 Pt 2):325–9. Pubmed Central PMCID: PMC1366488. Epub 1962/03/01. eng.

    Article  CAS  Google Scholar 

  2. Ascher PW, Heppner F. CO2-Laser in neurosurgery. Neurosurg Rev. 1984;7(2–3):123–33. Epub 1984/01/01. eng.

    Article  CAS  Google Scholar 

  3. Ascher PW. Status quo and new horizons of laser therapy in neurosurgery. Lasers Surg Med. 1985;5(5):499–506. Epub 1985/01/01. eng.

    Article  CAS  Google Scholar 

  4. Choy DS, Case RB, Fielding W, Hughes J, Liebler W, Ascher P. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317(12):771–2. Epub 1987/09/17. eng.

    Article  CAS  Google Scholar 

  5. Choy DS, Altman P. Fall of intradiscal pressure with laser ablation. J Clin Laser Med Surg. 1995;13(3):149–51. Epub 1995/06/01. eng.

    Article  CAS  Google Scholar 

  6. Casper GD, Mullins LL, Hartman VL. Laser-assisted disc decompression: a clinical trial of the holmium:YAG laser with side-firing fiber. J Clin Laser Med Surg. 1995;13(1):27–32. Epub 1995/02/01. eng.

    Article  CAS  Google Scholar 

  7. Hellinger J. Technical aspects of the percutaneous cervical and lumbar laser-disc-decompression and -nucleotomy. Neurol Res. 1999;21(1):99–102. Epub 1999/02/27. eng.

    Article  CAS  Google Scholar 

  8. Mayer HM, Brock M. Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg. 1993;78(2):216–25. Epub 1993/02/01. eng.

    Article  CAS  Google Scholar 

  9. Davis JK. Percutaneous discectomy improved with KTP laser. Clin Laser Mon. 1990;8(7):105–6. Epub 1990/06/08. eng.

    CAS  PubMed  Google Scholar 

  10. Yeung AT. Consideration for the use of the KTP laser for disc decompression and ablation. In: Sherk HH, editor. Spine: state of the art reviews, vol. 7(1). Philadelphia: Hanley & Belfus, Inc; 1993. p. 67–94.

    Google Scholar 

  11. Yeung AT. The evolution of percutaneous spinal endoscopy and discectomy: state of the art. Mt Sinai J Med. 2000;67(4):327–32. Epub 2000/10/06. eng.

    CAS  PubMed  Google Scholar 

  12. Knight M, Goswami A. Management of isthmic spondylolisthesis with posterolateral endoscopic foraminal decompression. Spine. 2003;28(6):573–81. Epub 2003/03/19. eng.

    PubMed  Google Scholar 

  13. Knight MT, Goswami A, Patko JT, Buxton N. Endoscopic foraminoplasty: a prospective study on 250 consecutive patients with independent evaluation. J Clin Laser Med Surg. 2001;19(2):73–81. Epub 2001/07/11. eng.

    Article  CAS  Google Scholar 

  14. Yeung AT, Gore S. In-vivo endoscopic visualization of patho-anatomy in symptomatic degenerative conditions of the lumbar spine II: intradiscal, foraminal, and central canal decompression. Surg Technol Int. 2011;XXI:299–319. Epub 2012/04/17. Eng.

    Google Scholar 

  15. Choy DS, Altman PA, Case RB, Trokel SL. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens. Clin Orthop Relat Res. 1991;267:245–50. Epub 1991/06/01. eng.

    Google Scholar 

  16. Singh V, Manchikanti L, Benyamin RM, Helm S, Hirsch JA. Percutaneous lumbar laser disc decompression: a systematic review of current evidence. Pain Physician. 2009;12(3):573–88. Review.

    PubMed  Google Scholar 

  17. Lee SH, Kang HS. Percutaneous endoscopic laser annuloplasty for discogenic low back pain. World Neurosurg. 2010;73(3):198–206. https://doi.org/10.1016/j.surneu.2009.01.023; discussion e33. Epub 2009 Mar 27.

    Article  PubMed  Google Scholar 

  18. Ahn Y, Lee SH, Lee JH, Kim JU, Liu WC. Transforaminal percutaneous endoscopic lumbar discectomy for upper lumbar disc herniation: clinical outcome, prognostic factors, and technical consideration. Acta Neurochir. 2009;151(3):199–206. Epub 2009/02/21. eng.

    Article  Google Scholar 

  19. Ahn Y, Lee SH, Park WM, Lee HY, Shin SW, Kang HY. Percutaneous endoscopic lumbar discectomy for recurrent disc herniation: surgical technique, outcome, and prognostic factors of 43 consecutive cases. Spine. 2004;29(16):E326–32. Epub 2004/08/11. eng.

    Article  Google Scholar 

  20. Choi G, Lee SH, Bhanot A, Raiturker PP, Chae YS. Percutaneous endoscopic discectomy for extraforaminal lumbar disc herniations: extraforaminal targeted fragmentectomy technique using working channel endoscope. Spine. 2007;32(2):E93–9. Epub 2007/01/17. eng.

    Article  Google Scholar 

  21. Choi G, Lee SH, Lokhande P, Kong BJ, Shim CS, Jung B, et al. Percutaneous endoscopic approach for highly migrated intracanal disc herniations by foraminoplastic technique using rigid working channel endoscope. Spine. 2008;33(15):E508–15. Epub 2008/07/03. eng.

    Article  Google Scholar 

  22. Jang JS, An SH, Lee SH. Transforaminal percutaneous endoscopic discectomy in the treatment of foraminal and extraforaminal lumbar disc herniations. J Spinal Disord Tech. 2006;19(5):338–43. Epub 2006/07/11. eng.

    Article  Google Scholar 

  23. Lee DY, Shim CS, Ahn Y, Choi YG, Kim HJ, Lee SH. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. 2009;46(6):515–21. Pubmed Central PMCID: PMC2803265. Epub 2010/01/12. eng.

    Article  Google Scholar 

  24. Lew SM, Mehalic TF, Fagone KL. Transforaminal percutaneous endoscopic discectomy in the treatment of far-lateral and foraminal lumbar disc herniations. J Neurosurg. 2001;94(2 Suppl):216–20. Epub 2001/04/17. eng.

    CAS  PubMed  Google Scholar 

  25. Mayer HM, Brock M, Berlien HP, Weber B. Percutaneous endoscopic laser discectomy (PELD). A new surgical technique for non-sequestrated lumbar discs. Acta Neurochir Suppl. 1992;54:53–8. Epub 1992/01/01. eng.

    Article  CAS  Google Scholar 

  26. Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine. 2008;33(9):931–9. Epub 2008/04/23. eng.

    Article  Google Scholar 

  27. Tsou PM, Yeung AT. Transforaminal endoscopic decompression for radiculopathy secondary to intracanal noncontained lumbar disc herniations: outcome and technique. Spine J. 2002;2(1):41–8. Epub 2003/11/01. eng.

    Article  Google Scholar 

  28. Yeung AT, Yeung CA. Minimally invasive techniques for the management of lumbar disc herniation. Orthop Clin North Am. 2007;38(3):363–72; abstract vi. Epub 2007/07/17. eng.

    Article  Google Scholar 

  29. Chiu JC. Evolving transforaminal endoscopic microdecompression for herniated lumbar discs and spinal stenosis. Surg Technol Int. 2004;13:276–86. Review.

    PubMed  Google Scholar 

  30. Schubert M, Hoogland T. Endoscopic transforaminal nucleotomy with foraminoplasty for lumbar disk herniation. Oper Orthop Traumatol. 2005;17(6):641–61. English, German.

    Article  Google Scholar 

  31. Hussain NS, Perez-Cruet M. Application of the flexible CO2 laser in minimally invasive laminectomies: technical note. Cureus. 2016;8(6):e628. https://doi.org/10.7759/cureus.628.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tatsui CE, Nascimento CNG, Suki D, Amini B, Li J, Ghia AJ, Thomas JG, Stafford RJ, Rhines LD, Cata JP, Kumar AJ, Rao G. Image guidance based on MRI for spinal insterstitial laser thermotherapy: technical aspects and accuracy. J Neurosurg Spine. 2017;26(5):605–12. https://doi.org/10.3171/2016.9.SPINE16475. Epub 2017 Feb 10.

    Article  PubMed  Google Scholar 

  33. Thomas JG, Al-Holou WN, de Almeida Bastos DC, Ghia AJ, Li J, Bishop AJ, Amini B, Rhines LD, Tatsui CE. A novel use of the intraoperative MRI for metastatic spine tumors: laser interstitial thermal therapy for percutaneous treatment of epidural metastatic spine disease. Neurosurg Clin N Am. 2017;28(4):513–24. https://doi.org/10.1016/j.nec.2017.05.006. Epub 2017 Aug 19

    Article  PubMed  Google Scholar 

  34. Tatsui CE, Stafford RJ, Li J, Sellin JN, Amini B, Rao G, Suki D, Ghia AJ, Brown P, Lee SH, Cowles CE, Weinberg JS, Rhines LD. Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg Spine. 2015;23(4):400–11. https://doi.org/10.3171/2015.2.SPINE141185. Epub 2015 Jul 3.

    Article  PubMed  Google Scholar 

  35. Yeung AT, Tsou PM. Posterolateral endoscopic excision for lumbar disc herniation: surgical technique, outcome, and complications in 307 consecutive cases. Spine. 2002;27(7):722–31. Epub 2002/03/30. eng.

    Article  Google Scholar 

  36. Ahn Y, Lee SH. Postoperative spondylodiscitis following transforaminal percutaneous endoscopic lumbar discectomy: clinical characteristics and preventive strategies. Br J Neurosurg. 2012;26(4):482–6. Epub 2012/02/10. eng.

    Article  Google Scholar 

  37. Fink B, Schneider T, Braunstein S, Schmielau G, Ruther W. Holmium: YAG laser-induced aseptic bone necroses of the femoral condyle. Arthroscopy. 1996;12(2):217–23. Epub 1996/04/01. eng.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Yeung .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    What is the most commonly used laser in spine surgery?

    1. (a)

      KTP

    2. (b)

      Nd: YAG

    3. (c)

      Hol:YAG

    4. (d)

      CO2

  2. 2.

    True or false: Lasers are useful in treating soft tissue, but not bone.

  3. 3.

    True or false: The use of lasers in spine surgery is only a recent phenomenon, is a gimmick, and is a result of the Internet and its ability for surgeons to attract patients with this high-tech procedure.

  4. 4.

    The many uses for lasers in spine surgery include the following:

    1. (a)

      Debulk metastatic tumors that are compressing the spinal cord

    2. (b)

      Remove the ligamentum flavum and bone to alleviate stenosis

    3. (c)

      Ablate small sensory nerves that innervate the facet joints

    4. (d)

      Assist in directly visualized disc removal during mechanical endoscopic discectomy

    5. (e)

      All of the above

    6. (f)

      None of the above

Answers

  1. 1.

    c

  2. 2.

    False. Lasers are capable of removing bone and are useful tools to complement other mechanical decompressive tools like burrs and Kerrisons.

  3. 3.

    False. It is true that there is a widespread promotion of high-tech surgical options on the Internet. This includes “laser surgery.” But lasers have been used in spine surgery since the 1980s and have useful, legitimate uses in MIS spine surgery.

  4. 4.

    e

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeung, C.A., Yeung, A.T. (2019). Lasers. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics