Skip to main content

Exopolysaccharides and Biofilms in Mitigating Salinity Stress: The Biotechnological Potential of Halophilic and Soil-Inhabiting PGPR Microorganisms

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Soil salinity is a key environmental factor restraining the productivity of soil and crop plants. In different parts of the world, agricultural productivity is decreasing mostly because of drought and salinity increase. The situation may become worse for global warming in the future. A wide range of adaptation and mitigation strategies have been adopted to cope up with these circumstances. Among the measures to control soil salinity, those that involve water management and changes in micro relief can be time-consuming and cost-intensive. In this scenario, biological methods of salinity stress management appear as a good alternative, and halotolerant bacteria may play an important role in mitigating salinity stress. The natural ability of these microorganisms to cope with harsh environmental conditions has been attributed to their high genetic diversity and physiological adaptations, such as the synthesis of compatible solutes, growth in biofilm consortia and production of exopolysaccharides (EPSs) and halotolerant enzymes. Furthermore, they are able to produce plant growth-promoting hormones. Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth, and bacterial EPS can help to mitigate salinity stress by reducing the content of Na+ available for plant uptake. To compensate the stress imposed by salinity, biofilm formation and EPS production are significant strategies of salt-tolerant bacteria to assist metabolism. Halophilic microorganisms can form biofilm and accumulate EPS at increasing salt stress. EPSs promote bacterial colonization of plant roots and soil particles, and they can eventually be added to soil to improve its structure and, consequently, to improve plant growth. In a long-term vision, alleviation of derelict soil, improved crop yield and restoration of mangrove diversity are possible by mechanistic use of EPS-producing halotolerant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmed V, Verma MK, Gupta S, Mandha V, Chauhan NS (2018) Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol 9:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali A, Shahzad R, Khan AL, Halo BA, Al-Yahyai R, Al-Harrasi A, Al-Rawahi A, Lee IJ (2017) Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. J Plant Interact 12:312–322

    Article  CAS  Google Scholar 

  • Arias S, Del Moral A, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Banerjee A, Bandopadhyay R (2016a) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Bandopadhyay R (2016b) Bacterial exopolysaccharides: major types and future prospects. In: Shukla P (ed) Microbial biotechnology: an interdisciplinary approach. CRC Press, Boca Raton, FL, pp 1–20

    Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Becker VI, Goessling JW, Duarte B, Caçador I, Liu F, Rosenqvist E, Jacobsen SE (2017) Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Funct Plant Biol 44:665–678

    Article  CAS  PubMed  Google Scholar 

  • Blaylock AD (1994) Soil salinity, salt tolerance, and growth potential of horticultural and landscape plants. University of Wyoming, Cooperative Extension Service, Department of Plant, Soil, and Insect Sciences, College of Agriculture

    Google Scholar 

  • Corwin DL, Rhoades JD, Šimůnek J (2007) Leaching requirement for soil salinity control: steady-state versus transient models. Agric Water Manag 90:165–180

    Article  Google Scholar 

  • Devkota M, Gupta RK, Martius C, Lamers JPA, Devkota KP, Sayre KD, Vlek PLG (2015) Soil salinity management on raised beds with different furrow irrigation modes in salt-affected lands. Agric Water Manag 152:243–250

    Article  Google Scholar 

  • Duarte B, Goessling JW, Marques JC, Caçador I (2015) Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: merging biophysical, biochemical and genetic insights. Plant Physiol Biochem 97:217–228

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd_Allah EF (2017) Impact of soil salinity on the plant-growth–promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24:1601–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Zhang Z, Wan C, Lu P, Bakour A (2017) Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric Water Manag 193:205–213

    Article  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halder U, Banerjee A, Bandopadhyay R (2017) Structural and functional properties, biosynthesis, and patenting trends of Bacterial succinoglycan: a review. Indian J Microbiol 57:278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    Chapter  Google Scholar 

  • Jiang J, Bo H, Rui Z, Zhang Z, Xu T, Meng L, Zou Q, Zheng XT (2018) Species encoding a protein identification method and application Pm_MF. CN Patent CN108330141A, 30 Jan 2018

    Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, Berlin

    Book  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmuduzzaman M, Ahmed ZU, Nuruzzaman AKM, Ahmed FRS (2014) Causes of salinity intrusion in coastal belt of Bangladesh. Int J Plant Res 4:8–13

    Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pasic L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol Salt Lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93

    Article  PubMed  Google Scholar 

  • Malash NM, Flowers TJ, Ragab R (2008) Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrigation Sci 26:313–323

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Navarro-Noya YE, Luna-Guido M, Dendooven L (2016) Cultivable nitrogen fixing bacteria from extremely alkaline-saline soils. Adv Microbiol 6:412

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Ni Z, Peng Y, Xia J, Wang Y, Yao H (2017) Desert area saline-alkali soil amelioration modifying agent and preparation method. CN Patent CN106866300A, 23 Jan 2017

    Google Scholar 

  • Nouri H, Borujeni SC, Nirola R, Hassanli A, Beecham S, Alaghmand S, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ 107:94–107

    Article  CAS  Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ (2015) Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr Polym 115:334–341

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2011) Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. J Basic Microbiol 52:566–572

    Article  PubMed  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84:512–519

    Article  CAS  Google Scholar 

  • Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sen S, Chandrasekhar CN (2014) Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 4:62–67

    Google Scholar 

  • Şengül N, Işık S, Aslım B, Uçar G, Demirbağ AE (2011) The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig Dis Sci 56:707–714

    Article  PubMed  Google Scholar 

  • Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. CRC Crit Rev Plant Sci 13:121–138

    Article  CAS  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65

    Article  CAS  Google Scholar 

  • Shan J, Yan X, Wang H (2014) Salt-resistance Bacillus methylotrophicus strain LJ and application thereof. CN Patent CN104017750A, 14 Apr 2014

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar J, Singh VP, Prasad SM (2014) Proline and salinity tolerance in plants. Biochem Pharmacol 3:1000170

    Google Scholar 

  • Sivaramaiah N, Malik DK, Sindhu SS (2007) Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian J Microbiol 47:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele DJ, Franklin DJ, Underwood GJ (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhamani SR, Tharanathan RN, Prasad MS (2004) Isolation and characterization of an extracellular polysaccharide from Pseudomonas caryophylli CFR 1705. Carbohydr Polym 56:423–427

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Vargas R, Pankova EI, Balyuk SA, Krasilnikov PV, Khasankhanova GM (2018) Handbook for saline soil management. Food and Agriculture Organization of the United Nations, Lomonosov Moscow State University. http://www.fao.org/3/i7318en/I7318EN.pdf. Accessed 28 Dec 2018

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192

    Article  Google Scholar 

  • Vineis P, Chan Q, Khan A (2011) Climate change impacts on water salinity and health. J Epidemiol Glob Health 1:5–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S (2015) Halophilic bacteria-containing soil modifier for saline land, and applications of halophilic bacteria-containing soil modifier in cichorium intybus l planting. CN Patent CN105018096A, 23 Jun 2015

    Google Scholar 

  • Wang S (2017a) Coastal sandy saline method of planting grass and sand cited improved soil and fertilizer conditions. CN Patent CN108207503A, 30 Nov 2017

    Google Scholar 

  • Wang S (2017b) Improved fertilizer suitable for saline-alkali soil and production method of improved fertilizer. CN Patent CN107324926A, 31 Aug 2017

    Google Scholar 

  • Wang S (2017c) Method for planting peanuts and improving soil fertility condition on sandy saline-alkali soil. CN Patent CN108029493A, 30 Nov 2017

    Google Scholar 

  • Wang S (2017d) Method for planting sophora alopecuroides by improving saline-alkali soil. CN Patent CN107324927A, 31 Aug 2017

    Google Scholar 

  • Wang S (2017e) Methods of sandy saline soil and fertilizer and improved soybean planting conditions. CN Patent CN108260373A, 30 Nov 2017

    Google Scholar 

  • Wang S (2017f) Methods of sandy saline soil and fertilizer to grow cotton and improved conditions. CN Patent CN108157106A, 30 Nov 2017

    Google Scholar 

  • Wang S (2017g) Method for carrying out raw soil greening on slight saline and alkaline land by using halophilic microorganism-containing water retaining agent. CN Patent CN106008821A, 31 May 2016

    Google Scholar 

  • Wang S (2018a) The method of planting clover beans sandy saline soil and fertilizer and improved conditions. CN Patent CN108235903A, 31 Jan 2018

    Google Scholar 

  • Wang S (2018b) The method of planting wild Mao sandy saline soil and fertilizer and improved conditions. CN Patent CN108323262A, 31 Jan 2018

    Google Scholar 

  • Wang Y (2018c) Composite soil amendments and microbial preparation containing licorice extract waste. CN Patent CN108251126A, 19 Mar 2018

    Google Scholar 

  • Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS (2012) The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. The EMBO journal 31:2648–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wu L, Yang Y, An W, Niu Z, Ding D (2013) Oil-degrading composite bacterium and microbial inoculum applied to high salt environment. CN Patent CN103232960B, 23 Apr 2013

    Google Scholar 

  • Wang H, Yang A, Zhang G, Ma B, Meng F, Peng M, Wang H (2017a) Enhancement of carotenoid and bacteriochlorophyll by high salinity stress in photosynthetic bacteria. Int Biodeterior Biodegradation 121:91–96

    Article  CAS  Google Scholar 

  • Wang H, Cao J, Zheng Y, Zhang W, Yang Z, Wang M, Jiang S, Wang B (2017b) High salt-resistant phosphate solubilizing bacterial strain and application thereof. CN Patent CN108085278A, 29 Dec 2017

    Google Scholar 

  • Wei Y, Liu X, Jia B, Zhang S, Liu J, Gao W (2013) Alkaline-tolerant and halophilic aspergillus strain and application thereof in environmental management. CN Patent CN103436450, 5 Jun 2013

    Google Scholar 

  • Xie Z, Yan Y (2017) Irrigation water for planting blueberry and preparation method thereof. CN patent CN107162649, 27 May 2017

    Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22:598–608

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Hu J, Long X, Liu Z, Rengel Z (2016) Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep 6:20687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. Plant Physiol 191:111–119

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang Z, Yin L, Pan Y, Gao P, Li Z (2018) Species for soil conditioner and a preparation method of microorganism saline. CN Patent CN108410470A, 5 Mar 2018

    Google Scholar 

  • Zhao Y, Li Y, Wang J, Pang H, Li Y (2016) Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res 155:363–370

    Article  Google Scholar 

  • Zhao S, Liu JJ, Banerjee S, Zhou N, Zhao ZY, Zhang K, Tian CY (2018) Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Sci Rep 8:4550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou D, Lin Z, Liu L, Zimmermann D (2013) Assessing secondary soil salinization risk based on the PSR sustainability framework. J Environ Manag 128:642–654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule and Department of Botany, The University of Burdwan, for pursuing research activities. AB is also thankful to Vicerrectoría de Investigación y Posgrado (VRIP), Universidad Católica del Maule, for postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Sarkar, S., Cuadros-Orellana, S., Bandopadhyay, R. (2019). Exopolysaccharides and Biofilms in Mitigating Salinity Stress: The Biotechnological Potential of Halophilic and Soil-Inhabiting PGPR Microorganisms. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_6

Download citation

Publish with us

Policies and ethics