Skip to main content

Effect of Salt Stress on Plants and Role of Microbes in Promoting Plant Growth Under Salt Stress

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

Abstract

Salinity has become a severe issue for plant growth, reducing crop yield worldwide. Salt stress in plants causes various physiological and metabolic changes such as nutritional imbalance, inhibition of water uptake, seed germination, photosynthesis, and decrease in growth. It is important to combat soil pollution to feed the world’s growing population. Microorganisms colonize plants in the natural environment. Plant root-associated microbes, including endophytes, closely cooperate with plants and mediate important physiological and metabolic processes, thereby increasing plant’s tolerance to salinity stress. In the present chapter, we discussed the effect of salt stress on plants and the role of microbes in promoting plant growth under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuno MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Phys Biochem 63:170–176

    Article  CAS  Google Scholar 

  • Allam NG, Kinany R, El-Refai E, Ali WY (2018) Potential use of beneficial salt tolerant bacteria for improving wheat productivity grown in salinized soil. J Microbiol Res 8:43–53

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Awad NM, Turky AS, Abdelhamid MT, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. JASR 8:2033–2044

    CAS  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45:405–413

    Article  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Book  Google Scholar 

  • Bianco C, Defez R (2012) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants, Mechanisms and adaptations. IntechOpen, London, pp 143–170

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants, Mechanisms and adaptations. IntechOpen, London, pp 21–38

    Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  Google Scholar 

  • Clarke D, Williams S, Jahiruddin M, Parks K, Salehin M (2015) Projections of on-farm salinity in coastal Bangladesh. Environ Sci Process Impacts 17:1127–1136

    Article  CAS  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front Plant Sci 6:712. https://doi.org/10.3389/fpls.2015.00712

    Article  PubMed  PubMed Central  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  Google Scholar 

  • Duan L, Sebastian J, Dinneny JR (2015) Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 1242:105–122

    Article  CAS  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd_Allah EF (2017) Impact of soil salinity on the plant-growth-promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24:1601–1608

    Article  CAS  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  Google Scholar 

  • Fu QL, Liu C, Ding NF, Lin YC, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agr Water Manage 97:1994–2000

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 1:20140065. https://doi.org/10.1098/rsif.2014.0065

    Article  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiobosis 66:133–140

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 701596:1. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanism of salt tolerance and interactive effect of Azospirillum bransilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Han QQ, Lu XP, Bai JP, Qiao Y, Pare PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525. https://doi.org/10.3389/fpls.2014.00525

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldebasi A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhance salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Inter 10:230–242

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768. https://doi.org/10.3389/fpls.2017.01768

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73:213–219

    Article  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  Google Scholar 

  • Kadmiri IM, Chaouqui L, Azaroual SE, Sijilmassi B, Yaakoubi K, Wahby I (2018) Phosphate-solubilizing and auxin-producing Rhizobacteria promote plant growth under saline conditions. Arab J Sci Eng 43:3403–3415

    Article  CAS  Google Scholar 

  • Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR (2018) An overview of the genetics of plant response to salt stress: present status and the way forward. Appl Biochem Biotechnol 186:306–334

    Article  CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227

    Article  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4:31–41

    Article  CAS  Google Scholar 

  • Keshtehgar A, Rigi K, Vazirimehr MR (2013) Effects of salt stress in crop plants. Int J Agric Crop Sci 5:2863–2867

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763–2774

    Article  CAS  Google Scholar 

  • Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239

    Article  CAS  Google Scholar 

  • Kruasuwan W, Thamchaipenet A (2018) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-producing modulates salt–stress response in sugarcane. J Plant Growth Regul 37:849–858

    Article  CAS  Google Scholar 

  • Kumar J, Singh S, Singha M, Srivastava PK, Mishra RK, Singh VP, Prasad SM (2017) Transcriptional regulation of salinity stress in plants: a short review. Plant Gene 11:160–169

    Article  CAS  Google Scholar 

  • Li Y (2008) Effect of salt stress on seed germination and seedling growth of three salinity plants. Pak J Biol Sci 11:1268–1272

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe mediated mitigation in plants: the omics strategies. Front Plant Sci 8:1–25. https://doi.org/10.3389/fpls.2017.00172

    Article  Google Scholar 

  • Munns R (1988) Effect of high external NaCl concentrations on ion transport within the shoot of Lupinus albus. I. Ions in xylem sap. Plant Cell Environ 11:283–289

    Article  CAS  Google Scholar 

  • Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26:459–464

    Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569

    CAS  Google Scholar 

  • Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, Sy MO, Champion A (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331. https://doi.org/10.3389/ fpls.2016.01331

    Article  PubMed  PubMed Central  Google Scholar 

  • Nongpiur RC, Singla Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357

    Article  CAS  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘micro tom’ tomato plants. J Appl Microbiol l117:766–773

    Article  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:plu047. https://doi.org/10.1093/aobpla/plu047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Perez-Lopez U, Robredo A, Lacuesta M, Sgherri C, Munoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  Google Scholar 

  • Saravanavel R, Ranganathan R, Anantharaman P (2011) Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. Recent Res Sci Technol 3:177–180

    CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2017) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  Google Scholar 

  • Siddikee M, Chauhan P, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  Google Scholar 

  • Singh SK, Sharma HC, Goswami AM, Datta SP, Singh SP (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol Plant 43:283–286

    CAS  Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11:1259–1266

    Article  CAS  Google Scholar 

  • Srivastava S, Patel JS, Singh HB, Sinha A, Sarma BK (2015) Streptomyces rochei SM3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. J Phytopathol 163:583–592

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Expt Bot 61:4449–4459

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Verma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability-a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408. https://doi.org/10.1371/journal. pone.0196408

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32:297–304

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yan JM, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781

    Article  CAS  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Rayu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  Google Scholar 

  • Zou N, Dart PJ, Marcar NE (1995) Interaction of salinity and rhizobial strain on growth and N2-fixation by Acacia ampliceps. Soil Biol Biochem 27:409–413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program; No. 2017E01031). W. -J. L. was also supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar-Funded Scheme (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narsing Rao, M.P., Dong, ZY., Xiao, M., Li, WJ. (2019). Effect of Salt Stress on Plants and Role of Microbes in Promoting Plant Growth Under Salt Stress. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_18

Download citation

Publish with us

Policies and ethics