Skip to main content

Functional Analysis and Optimization Methods in Perturbative QCD

  • Chapter
  • First Online:
Functional Analysis and Optimization Methods in Hadron Physics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 451 Accesses

Abstract

In this chapter we first show that ideas from hyperasymptotics can be used to infer the existence of terms additional to the usual operator product expansions (OPE) of QCD correlators. A connection between these quark-hadron duality-violating terms and the singularities of the Borel-Laplace transform in the Borel plane is emphasized. We then discuss a method based on functional analysis for testing the presence of duality violation from experimental data. Finally, an alternative way to go beyond finite-order perturbation theory, by a modified perturbative expansion based on the conformal mapping of the Borel plane, is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In mathematical language, we say that the Adler function is not Borel summable. The Borel nonsummability results also from the structure of the singularities of D near the origin of the \(a_s\) complex plane, obtained in [1, 2].

References

  1. G. ’t Hooft, in The Whys of Subnuclear Physics, ed. by A. Zichichi (Plenum Press, New York, 1979)

    Google Scholar 

  2. N.N. Khuri, Phys. Lett. 82B, 83 (1979)

    Article  ADS  Google Scholar 

  3. M. Beneke, Phys. Rept. 317, 1 (1999)

    Article  ADS  Google Scholar 

  4. M.A. Shifman, Int. J. Mod. Phys. A 11, 3195 (1996)

    Article  ADS  Google Scholar 

  5. B. Blok, M.A. Shifman, D.X. Zhang, Phys. Rev. D 57, 2691 (1998); Erratum: Phys. Rev. D 59, 019901 (1999)

    Google Scholar 

  6. M.A. Shifman, in At the Frontier of Particle Physics, vol. 3 (World Scientific, Singapore, 2001), pp. 1447–1494

    Chapter  Google Scholar 

  7. M. Golterman, S. Peris, B. Phily, E. de Rafael, JHEP 01, 024 (2002)

    Article  ADS  Google Scholar 

  8. O. Catá, M. Golterman, S. Peris, JHEP 08, 076 (2005)

    Article  ADS  Google Scholar 

  9. O. Catá, M. Golterman, S. Peris, Phys. Rev. D 77, 093006 (2008)

    Article  ADS  Google Scholar 

  10. O. Catá, M. Golterman, S. Peris, Phys. Rev. D 79, 053002 (2009)

    Article  ADS  Google Scholar 

  11. M. Shifman, J. Exp. Theor. Phys. 120, 386 (2015)

    Article  ADS  Google Scholar 

  12. See, for instance, M.V. Berry, C.J. Howls, Proc. R. Soc. Lond. A 430, 653 (1990); J.P. Boyd, Acta Applic. Mathem. 56, 1 (1999)

    Google Scholar 

  13. D. Boito, I. Caprini, M. Golterman, K. Maltman, S. Peris, Phys. Rev. D 97, 054007 (2018)

    Article  ADS  Google Scholar 

  14. I. Caprini, M. Golterman, S. Peris, Phys. Rev. D 90, 033008 (2014)

    Article  ADS  Google Scholar 

  15. D. Boito, I. Caprini, Phys. Rev. D 95, 074027 (2017)

    Article  ADS  Google Scholar 

  16. M. Davier, A. Höcker, B. Malaescu, C.Z. Yuan, Z. Zhang, Eur. Phys. J. C 74, 2803 (2014)

    Article  ADS  Google Scholar 

  17. M. Beneke, M. Jamin, JHEP 09, 044 (2008)

    Article  ADS  Google Scholar 

  18. D. Boito, O. Catá, M. Golterman, M. Jamin, K. Maltman, J. Osborne, S. Peris, Phys. Rev. D 84, 113006 (2011)

    Article  ADS  Google Scholar 

  19. A. Pich, A. Rodríguez-Sánchez, Phys. Rev. D 94, 034027 (2016)

    Article  ADS  Google Scholar 

  20. D. Boito, M. Golterman, K. Maltman, S. Peris, Phys. Rev. D 95, 034024 (2017)

    Article  ADS  Google Scholar 

  21. A.H. Mueller, in QCD; 20 Years Later, vol. 1, ed. by P. Zerwas, H.A. Kastrup (World Scientific, Singapore, 1993)

    Google Scholar 

  22. A.H. Mueller, Nucl. Phys. B 250, 327 (1985)

    Article  ADS  Google Scholar 

  23. I. Caprini, M. Neubert, JHEP 03, 007 (1999)

    Article  ADS  Google Scholar 

  24. I. Caprini, J. Fischer, Phys. Rev. D 60, 054014 (1999)

    Article  ADS  Google Scholar 

  25. I. Caprini, J. Fischer, Phys. Rev. D 62, 054007 (2000)

    Article  ADS  Google Scholar 

  26. I. Caprini, J. Fischer, Eur. Phys. J. C 24, 127 (2002)

    Article  ADS  Google Scholar 

  27. M. Beneke, V.M. Braun, N. Kivel, Phys. Lett. B 404, 315 (1997)

    Article  ADS  Google Scholar 

  28. I. Caprini, J. Fischer, Eur. Phys. J. C 64, 35 (2009)

    Article  ADS  Google Scholar 

  29. I. Caprini, J. Fischer, Phys. Rev. D 84, 054019 (2011)

    Article  ADS  Google Scholar 

  30. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, Phys. Rev. D 87, 014008 (2013)

    Article  ADS  Google Scholar 

  31. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, Phys. Rev. D 88, 034026 (2013)

    Article  ADS  Google Scholar 

  32. I. Caprini, J. Fischer, G. Abbas, B. Ananthanarayan, in Perturbation Theory; Advances in Research and Applications (Nova Science Publishers, 2018), pp. 211–254

    Google Scholar 

  33. I. Caprini, Phys. Rev. D 98, 056016 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irinel Caprini .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caprini, I. (2019). Functional Analysis and Optimization Methods in Perturbative QCD. In: Functional Analysis and Optimization Methods in Hadron Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-18948-8_6

Download citation

Publish with us

Policies and ethics