Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 461 Accesses

Abstract

In this chapter we discuss the status of analyticity within the Standard Model of particle physics. First, the proof given by Oehme for the analytic properties of the hadronic amplitudes in quantum chromodynamics (QCD) is presented at a qualitative level. We then review the recent progress in modern dispersion theory, in connection with the developments in chiral perturbation theory and lattice QCD, and emphasize the role of analytic continuation for relating the predictions of perturbative QCD to low-energy physical observables. Finally, we introduce functional analysis techniques as alternatives to the standard dispersion relations for implementing in an optimal way the available theoretical or experimental input. Two examples involving hadronic form factors and perturbative QCD are given for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a recent review see: J. A. Oller, A Brief Introduction to Dispersion Relations—With Modern Applications, (SpringerBrief in Physics, 2019).

  2. 2.

    The expansion (2.14) is actually divergent, the coefficients \(c_{n,1}\) growing factorially as n! at large n. We shall discuss in more detail this aspect in Chap. 6.

  3. 3.

    We shall discuss the origin and the expression of the duality-violating terms in Sect. 6.1.

References

  1. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  2. R. Oehme, PiN Newslett. 7, 1 (1992)

    Google Scholar 

  3. R. Oehme, Mod. Phys. Lett. A 8, 1533 (1993)

    Article  ADS  Google Scholar 

  4. R. Oehme, Int. J. Mod. Phys. A 10, 1995 (1995)

    Article  ADS  Google Scholar 

  5. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  6. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  7. J. Bijnens, G. Colangelo, P. Talavera, JHEP 05, 014 (1998)

    ADS  Google Scholar 

  8. S. Aoki et al., Eur. Phys. J. C 77, 112 (2017)

    Article  ADS  Google Scholar 

  9. S.M. Roy, Phys. Lett. B 36, 353 (1971)

    Article  ADS  Google Scholar 

  10. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001)

    Article  ADS  Google Scholar 

  11. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rept. 353, 207 (2001)

    Article  ADS  Google Scholar 

  12. I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012)

    Article  ADS  Google Scholar 

  13. R. García-Martín, R. Kamiński, J.R. Peláez, J. Ruiz de Elvira, F.J. Ynduráin, Phys. Rev. D 83, 074004 (2011)

    Article  ADS  Google Scholar 

  14. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006)

    Article  ADS  Google Scholar 

  15. J.R. Peláez, Phys. Rept. 658, 1 (2016)

    Article  ADS  Google Scholar 

  16. P. Büttiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33, 409 (2004)

    Article  ADS  Google Scholar 

  17. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, Ulf-G. Meissner. Phys. Rept. 625, 1 (2016)

    Article  ADS  Google Scholar 

  18. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, S.P. Schneider, JHEP 10, 141 (2018)

    Article  ADS  Google Scholar 

  19. G. Colangelo, S. Lanz, H. Leutwyler, E. Passemar, Eur. Phys. J. C 78, 947 (2018)

    Article  ADS  Google Scholar 

  20. F. Niecknig, B. Kubis, S.P. Schneider, Eur. Phys. J. C 72, 2014 (2012)

    Article  ADS  Google Scholar 

  21. W.A. Bardeen, W.K. Tung, Phys. Rev. 173, 1423 (1968); Erratum: Phys. Rev. D 4, 3229 (1971)

    Google Scholar 

  22. I. Guiasu, C. Pomponiu, E.E. Radescu, Ann. Phys. 114, 296 (1978)

    Article  ADS  Google Scholar 

  23. I. Caprini, I. Guiasu, E.E. Radescu, Phys. Rev. D 25, 1808 (1982)

    Article  ADS  Google Scholar 

  24. I. Caprini, Phys. Rev. D 27, 1479 (1983)

    Article  ADS  Google Scholar 

  25. B. Ananthanarayan, I. Caprini, D. Das, Phys. Rev. Lett. 119, 132002 (2017)

    Article  ADS  Google Scholar 

  26. M. Beneke, M. Jamin, JHEP 09, 044 (2008)

    Article  ADS  Google Scholar 

  27. E.C. Poggio, H.R. Quinn, S. Weinberg, Phys. Rev. D 13, 1958 (1976)

    Article  ADS  Google Scholar 

  28. M.A. Shifman, Int. J. Mod. Phys. A 11, 3195 (1996)

    Article  ADS  Google Scholar 

  29. B. Blok, M.A. Shifman, D.X. Zhang, Phys. Rev. D 57, 2691 (1998); Erratum: Phys. Rev. D 59, 019901 (1999)

    Google Scholar 

  30. M.A. Shifman, in At the Frontier of Particle Physics, vol. 3 (World Scientific, Singapore, 2001), pp. 1447–1494

    Chapter  Google Scholar 

  31. M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B 147, 385–448 (1979)

    Google Scholar 

  32. I. Caprini, M. Neubert, JHEP 03, 007 (1999)

    Article  ADS  Google Scholar 

  33. I. Caprini, M. Golterman, S. Peris, Phys. Rev. D 90, 033008 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irinel Caprini .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caprini, I. (2019). Modern Approach to Analyticity. In: Functional Analysis and Optimization Methods in Hadron Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-18948-8_2

Download citation

Publish with us

Policies and ethics