Skip to main content

Theory of Strong Interactions Before the Standard Model

  • Chapter
  • First Online:
  • 457 Accesses

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

In this chapter we briefly review the attempts to construct a theory of the strong interactions in the 1960s, when it became obvious that a perturbatively renormalizable quantum field theory of these forces was not possible. The derivation of the analytic properties of scattering amplitudes and form factors from the general principles of causality and unitarity in quantum field theory is discussed at a qualitative level, using the Lehmann–Symanzik–Zimmermann (LSZ) formalism. Standard dispersion relations based on Cauchy integral formula are written down for scattering amplitudes and form factors. Finally, some pitfalls in practical applications, related to the so-called instability of analytic continuation, are emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We shall use both terms “analytic” and “holomorphic”, which are equivalent for complex-valued functions of complex variables.

  2. 2.

    This relation is known also as Sokhotski–Plemelj, or Plemelj–Privalov relation [16].

  3. 3.

    In the case of unequal masses, the partial waves have also a cut of circular shape in the complex s-plane.

  4. 4.

    Functions satisfying this property are sometimes said to be “analytic functions of real type”, or “real-analytic functions”, not to be confused with the real functions defined only on the real axis.

  5. 5.

    The zeros on the cut can be accounted for by a suitable variation by \(\pm \pi \) of the phase.

  6. 6.

    A compact topological space is the generalization of the sets closed and bounded in the Euclidean spaces. Criteria for compactness for functional spaces have been formulated, for instance by Arzelà–Ascoli theorem [41].

References

  1. R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, The Analytic S-Matrix (Cambridge University Press, Cambridge, 1966)

    Google Scholar 

  2. L.D. Landau, Nucl. Phys. B 13, 181 (1959)

    Article  Google Scholar 

  3. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)

    Article  ADS  Google Scholar 

  4. A. Wightman, Phys. Rev. 101, 860 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Lehmann, K. Symanzik, W. Zimmermann, Nuovo Cim. 1, 205 (1956); 2, 425 (1957)

    Google Scholar 

  6. G. Källen, A.S. Wightman, Mat-fyz. Skrifth 1, Nr. 6 (1958)

    Google Scholar 

  7. G. Barton, Introduction to Dispersion Techniques in Field Theory (Benjamin, New York, 1965)

    Google Scholar 

  8. R. Oehme, Nuovo Cim. 4, 1316 (1956)

    Article  ADS  Google Scholar 

  9. K. Symanzik, Phys. Rev. 105, 743 (1957)

    Article  ADS  Google Scholar 

  10. M. Gell-Mann, M.L. Goldberger, W.E. Thirring, Phys. Rev. 95, 1612 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.L. Goldberger, Y. Nambu, R. Oehme, Ann. Phys. (New York) 2, 226 (1956)

    Article  ADS  Google Scholar 

  12. G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1337 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.J. Bremerman, R. Oehme, J.G. Taylor, Phys. Rev. 100, 2178 (1958)

    Article  ADS  Google Scholar 

  14. N.N. Bogoliubov, B.V. Medvedev, M.K. Polivanov, Voprossy teorii dispersionykh sootnoshenii (Moscow, 1958) [Problems in the Theory of Dispersion Relations] (Institute for Advanced Study Press, Princeton, 1958)

    Google Scholar 

  15. H. Lehmann, Nuovo Cim. 10, 579 (1958); Suppl. Nuovo Cim. 14, 1 (1959)

    Article  ADS  Google Scholar 

  16. N.I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953)

    MATH  Google Scholar 

  17. A. Martin, Nuovo Cim. 42, 930 (1966)

    Article  ADS  Google Scholar 

  18. M. Froissart, Phys. Rev. 123, 1053 (1961)

    Article  ADS  Google Scholar 

  19. A. Martin, Phys. Rev. 129, 1432 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Martin, F. Cheung, Analyticity Properties and Bounds of the Scattering Amplitudes (Gordon and Beach, New York, 1970)

    Google Scholar 

  21. C. Lopez, G. Mennessier, Phys. Lett. 58B, 437 (1975)

    Article  ADS  Google Scholar 

  22. E. Fermi, Nuovo Cim. 2S1, 17 (1955) [Riv. Nuovo Cim. 31, 1 (2008)]

    Article  ADS  Google Scholar 

  23. K.M. Watson, Phys. Rev. 95, 228 (1954)

    Article  ADS  Google Scholar 

  24. M.L. Goldberger, S.B. Treiman, Phys. Rev. 110, 1178 (1958); Phys. Rev. 111, 254 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Mandelstam, Phys. Rev. Lett. 4, 84 (1960)

    Article  ADS  Google Scholar 

  26. R. Oehme, Phys. Rev. 111, 143 (1958); Nuovo Cim. 13, 778 (1959); Phys. Rev. 117, 1151 (1960)

    Google Scholar 

  27. Y. Nambu, Nuovo Cim. 9, 610 (1958)

    Article  ADS  Google Scholar 

  28. T. Regge, Nuovo Cim. 14, 951 (1959)

    Article  ADS  Google Scholar 

  29. P.D.B. Collins, Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, 1977)

    Book  Google Scholar 

  30. S. Mandelstam, Phys. Rev. 112, 1344 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Omnès, Nuovo Cim. 8, 316 (1958)

    Article  ADS  Google Scholar 

  32. R.E. Cutkosky, Ann. Phys. 54, 350 (1969)

    Article  ADS  Google Scholar 

  33. R.E. Cutkosky, B.B. Deo, Phys. Rev. D 1, 2547 (1970)

    Article  ADS  Google Scholar 

  34. S. Ciulli, Nuovo Cim. A 61, 787 (1969); Nuovo Cim. A 62, 301 (1969)

    Google Scholar 

  35. I. Caprini, S. Ciulli, A. Pomponiu, I. Sabba-Stefanescu, Phys. Rev. D 5, 1658 (1972)

    Article  ADS  Google Scholar 

  36. S. Ciulli, Lect. Notes Phys. 17, 70 (1973)

    Article  ADS  Google Scholar 

  37. S. Ciulli, G. Nenciu, J. Math. Phys. 14, 1675 (1973)

    Article  ADS  Google Scholar 

  38. S. Ciulli, C. Pomponiu, I. Sabba Stefanescu, Phys. Rep. 17, 133 (1975)

    Google Scholar 

  39. I. Caprini, M. Ciulli, S. Ciulli, C. Pomponiu, I. Sabba-Stefanescu, M. Sararu, Comput. Phys. Commun. 18, 305 (1979)

    Article  ADS  Google Scholar 

  40. A.N. Tikhonov, Dokl. Akad. Nauk. 39, 195 (1943)

    Google Scholar 

  41. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  42. S.M. Roy, Phys. Lett. B 36, 353 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irinel Caprini .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caprini, I. (2019). Theory of Strong Interactions Before the Standard Model. In: Functional Analysis and Optimization Methods in Hadron Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-18948-8_1

Download citation

Publish with us

Policies and ethics